x² - 1/x²
solve no spamming
Answers
Answered by
0
This is the long way to find the value of x² + 1/x², substitute the given x = 2 + √3 into the variable x.
x² + 1/x²
= (2 + √3)² + 1/(2 + √3)²
= [2² + 2(2)(√3) + (√3)²] + 1/[2² + 2(2)(√3) + (√3)²]
= (4 + 4√3 + 3) + 1/(4 + 4√3 + 3)
= (7 + 4√3) + 1/(7 + 4√3)
= (7 + 4√3)²/(7 + 4√3) + 1/(7 + 4√3)
= ((7 + 4√3)² + 1)/(7 + 4√3)
= (7² + 2(7)(4√3) + (4√3)² + 1)/(7 + 4√3)
= (49 + 56√3 + 48 + 1)/(7 + 4√3)
= (98 + 56√3)/(7 + 4√3)
= 14(7 + 4√3)/(7 + 4√3)
= 14
what is the value of (x²+4xy+y²) /(x+y)?
4,493 Views
If ‘x = a+√a²+1’, then what is ‘a’ in terms of ‘x’?
3,922 Views
If x=1/2-√3,the value of x^3-2x^2-7x+10 is equal to?
8,220 Views
Akshat Agarwal
Answered 1 year ago
Given -
x=2+√3
Now,
x^2 +1/x^2
=(2+√3)^2 + 1/(2+√3)^2
=7+4√3+1/(7+√3)
=7+4√3 +(7-√3)/(49–48)
=7+4√3+7–4√3
= 14
wwwamitamit123:
plz mark me brilliant...
Similar questions