Math, asked by sanjayammu2007, 10 months ago

X2 - 22x + 117 ÷ x- 13

Attachments:

Answers

Answered by navyasoni1009
0

Answer:

HI...

Step-by-step explanation:

(x - 9) • (x - 13)

x2-22x+117/x-13  

Final result :

 x3 - 22x2 - 13x + 117

 —————————————————————

           x          

Step by step solution :

Step  1  :

           117

Simplify   ———

            x  

Equation at the end of step  1  :

                   117      

 (((x2) -  22x) +  ———) -  13

                    x      

Step  2  :

Rewriting the whole as an Equivalent Fraction :

2.1   Adding a fraction to a whole

Rewrite the whole as a fraction using  x  as the denominator :

                x2 - 22x     (x2 - 22x) • x

    x2 - 22x =  ————————  =  ——————————————

                   1               x        

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Step  3  :

Pulling out like terms :

3.1     Pull out like factors :

  x2 - 22x  =   x • (x - 22)  

Adding fractions that have a common denominator :

3.2       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

x • (x-22) • x + 117     x3 - 22x2 + 117

————————————————————  =  ———————————————

         x                      x        

Equation at the end of step  3  :

 (x3 - 22x2 + 117)    

 ————————————————— -  13

         x            

Step  4  :

Rewriting the whole as an Equivalent Fraction :

4.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  x  as the denominator :

         13     13 • x

   13 =  ——  =  ——————

         1        x    

Polynomial Roots Calculator :

4.2    Find roots (zeroes) of :       F(x) = x3 - 22x2 + 117

Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  117.

The factor(s) are:

of the Leading Coefficient :  1

of the Trailing Constant :  1 ,3 ,9 ,13 ,39 ,117

Let us test ....

  P    Q    P/Q    F(P/Q)     Divisor

     -1       1        -1.00        94.00      

     -3       1        -3.00        -108.00      

     -9       1        -9.00       -2394.00      

     -13       1       -13.00       -5798.00      

     -39       1       -39.00       -92664.00      

     -117       1       -117.00       -1902654.00      

     1       1        1.00        96.00      

     3       1        3.00        -54.00      

     9       1        9.00        -936.00      

     13       1        13.00       -1404.00      

     39       1        39.00       25974.00      

     117       1       117.00       1300572.00      

Polynomial Roots Calculator found no rational roots

Adding fractions that have a common denominator :

4.3       Adding up the two equivalent fractions

(x3-22x2+117) - (13 • x)     x3 - 22x2 - 13x + 117

————————————————————————  =  —————————————————————

           x                           x          

Checking for a perfect cube :

4.4    x3 - 22x2 - 13x + 117  is not a perfect cube

Trying to factor by pulling out :

4.5      Factoring:  x3 - 22x2 - 13x + 117  

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  -13x + 117  

Group 2:  x3 - 22x2  

Pull out from each group separately :

Group 1:   (x - 9) • (-13)

Group 2:   (x - 22) • (x2)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

4.6    Find roots (zeroes) of :       F(x) = x3 - 22x2 - 13x + 117

    See theory in step 4.2

In this case, the Leading Coefficient is  1  and the Trailing Constant is  117.

The factor(s) are:

of the Leading Coefficient :  1

of the Trailing Constant :  1 ,3 ,9 ,13 ,39 ,117

Let us test ....

  P    Q    P/Q    F(P/Q)     Divisor

     -1       1        -1.00        107.00      

     -3       1        -3.00        -69.00      

     -9       1        -9.00       -2277.00      

     -13       1       -13.00       -5629.00      

     -39       1       -39.00       -92157.00      

     -117       1       -117.00       -1901133.00      

     1       1        1.00        83.00      

     3       1        3.00        -93.00      

     9       1        9.00       -1053.00      

     13       1        13.00       -1573.00      

     39       1        39.00       25467.00      

     117       1       117.00       1299051.00      

Polynomial Roots Calculator found no rational roots

Final result :

 x3 - 22x2 - 13x + 117

 —————————————————————

           x          

 

HOPE THIS HELPS YOU!

Similar questions