..
x² - (2b - 1)x + (b² - b - 20) = 0
Factorise.⇄
Answers
Answer:
x² - (2b - 1)x + (b² - b - 20) = 0
x² - (2b - 1)x + [ b² - 5b + 4b - 20] = 0
x² - (2b - 1)x + [ b (b - 5) + 4 (b - 5)] = 0
x² - (2b - 1)x + (b - 5 )( b + 4 ) = 0
x² - (b - 5)x - (b + 4)x + (b - 5 )( b + 4 ) = 0
x [ x - (b -5)] - (b + 4)[ x - (b - 5)] = 0
[ x - (b -5) ] [ x - (b + 4) ] = 0
Therefore, using zero product rule;
x = (b - 5) or x = (b + 4)
__________________
Thanks for the question!
x2 − (2b − 1) x + (b2 − b − 20) = 0
Comparing the above equation with Ax2 + Bx + C = 0
We get,
A = 1B = −(2b − 1)C = b2 − b − 20
Now, D = B2 − 4AC= (2b − 1)2 − 4 (b2 − b − 20)= 4b2 + 1 − 4b − 4b2 + 4b + 80= 81 > 0
So, the above equation has 2 real and distinct roots given by,
x = −B + D√2A
x = −B − D√2ᴀ
⇒ x = 2b − 1 + 92 or x = 2b − 1 − 92⇒ x = b + 4 or x = b − 5