Math, asked by arjunkukade09, 2 months ago

x² +2x+15
------------------
2x²+13x+15

please solve step by step​

Answers

Answered by OoINTROVERToO
1

Step-by-step explanation:

 \tt \frac{ {x}^{2} + 2x  -  15 }{2 {x}^{2} + 13x + 15 }  \\  \\  \tt \frac{ {x}^{2} + 5x - 3x  - 15 }{2 {x}^{2} + 10x + 3x + 15 } \\  \\ \tt \frac{ x(x+ 5) - 3(x   +  5) }{2 x(x+5) + 3(x +5)} \\  \\ \tt \frac{ \cancel{ (x+ 5)}(x - 3) }{ \cancel{(x+5)}(2x + 3)} \\  \\   \tt\frac{x - 3}{2x + 3}

Answered by Goofdood
1

Answer:

Step-by-step explanation:

x² + 2x - 15 =0

⇒x² + 5x -3x -15 =0

⇒x(x + 5 ) -3 ( x + 5) =0

⇒ (x - 3) (x +5 ) = 0

∴ x-3 = 0  or x+5 =0

⇒x=3 or x=(-5)

2x² + 13 +15 =0

⇒ 2x² + 10x + 3x + 15 =0

⇒2x(x + 5) + 3(x + 5) =0

⇒(2x +3) (x + 5) = 0

2x +3 = 0   or  x + 5 = 0

⇒x = (-3)/2  or x = -5

Here is your answer

Zeroes are found using factorization method

Similar questions