Math, asked by mareedunagamani, 10 months ago


3rt 6
Solve for "x"
if log
I
2
2
solve for  x if log_{2}(x }^{2} { - 3x + 6 = 2) \\

Answers

Answered by Anonymous
6

Given:

  • A logarithm to us.
  • The logarithm is \sf{log_{2}^{x^{2}-3x+6}=2}

To Find:

  • The value of x .

Solution:

Given logarithm to us is ,

\sf{\implies log_{2}^{x^{2}-3x+6}=2}

\sf{\implies 2^{2}=x^{2}-3x+6}

\sf{\implies 4=x^{2}-3x+6}

\sf{\implies x^{2}-3x+6-4=0}

\sf{\implies x^{2}-3x+2=0}

\sf{\implies x^{2}-2x-x+2=0}

\sf{\implies x(x-2)-1(x-2)=0}

\sf{\implies (x-1)(x-2)=0}

{\underline{\underline{\boxed{\red{\sf{\leadsto x =2,1}}}}}}

Similar questions