Math, asked by singhdeepshikha932, 11 months ago


(x² + 3x + 2)2 – 8(x² + 3x) – 4 = 0

Answers

Answered by vashistavarma
1

Answer:

Step-by-step explanation:

2(x^2 + 3x +2) - 8(x^2 + 3x) - 4 = 0

=> 2x^2 + 6x + 4 - 8x^2 - 24x - 4 = 0

=> -6x^2 - 18x = 0

=> 6x^2 + 18x = 0

=> 6(x^2 + 3x) = 0

=> x^2 + 3x = 0

=> x(x + 3) = 0

=> x + 3 = 0

Therefore, x = -3..........

Thank You...

Answered by Anonymous
10

Correct Question :

\normalsize\bf\ (x^2 + 3x + 2)2 - 8(x^2 - 3x) - 4 = 0 \\ \normalsize\sf\ Find \: the \: value \: of \: x

 \rule{200}2

AnswEr :

\underline{\textsf{According \: to \: the \: given \: in \: Question:}}

\normalsize\:\sf\ Break \: the \: question \: into \: two \: parts \: \\ \normalsize\sf\ For \: ex -

\boxed{\normalsize\sf\underbrace{(x^2 + 3x + 2)2}_{Part \: 1} - \underbrace{8(x^2 - 3x) - 4}_{Part \: 2} = 0}

 \rule{170}1

\underline{\bigstar\:\textsf{Solving \: with \: part \: 1}}

\normalsize\ : \implies\sf\ (x^2 - 3x + 2)2 = 0

\scriptsize\tt{\quad\dag\ Multiply \: equation \: 1 \:  with \: 2}

\normalsize\ : \implies\sf\ 2x^2 - 6x + 4 = 0

\normalsize\ : \implies\sf\  2x^2 - 6x + 4 = 0 \: ---(\frak\ Eq.1)

\underline{\bigstar\:\textsf{Solving \: with \: part \: 2}}

\normalsize\twoheadrightarrow\sf\ 8(x^2 + 3x) - 4 = 0

\normalsize\twoheadrightarrow\sf\  8x^2 - 24x  - 4 = 0

\normalsize\twoheadrightarrow\sf\  8x^2 - 24x  - 4 = 0 --- (\frak\ Eq.2)

 \rule{170}1

\underline{\bigstar\:\textsf{Subtract\: Equation \: 1 \: from \: 2(Eq. 1 - Eq.2)}}

\normalsize\dashrightarrow\sf\ [2x^2 + 6x +4] - [8x^2 - 24x - 4] = 0

\normalsize\dashrightarrow\sf\ 2x^2 + 6x + \cancel{4} -  8x^2 - 24x - \cancel{4} = 0

\normalsize\dashrightarrow\sf\ -6x^2 - 18x = 0

\normalsize\dashrightarrow\sf\ -(6x^2 + 18x) = 0

\scriptsize\tt{\quad\dag\ Take \: negative \: sign \: common}

\normalsize\dashrightarrow\sf\ 6x(x + 3) = 0

 \rule{170}1

\sf{The \: Value \: of \: x \: }\begin{cases}\sf{6x = 0}\\\sf{(x + 3) = 0}\end{cases}

\normalsize\ : \implies\sf\   6x \quad\ or \quad\  (x + 3) = 0

\normalsize\ : \implies\sf\  x = \frac{0}{6} \quad\ or \quad\ 0 - 3

\normalsize\ : \implies\sf\ x = 0  \quad\ or \quad\  -3

\therefore\:\underline{\textsf{Hence, \: the \: value \: of \: x \: are }{\textbf{\: 0, -3}}}

Similar questions