Math, asked by Anonymous, 7 months ago

x² - √3x - 6

Please solve it.... Don't spam.....​

Answers

Answered by Stera
8

Answer:

x = -√3 or 2√3

Step-by-step explanation:

 \sf {x}^{2}  -  \sqrt{3} x - 6 \\  \\  \sf =  {x}^{2}  - 2 \sqrt{3} x +  \sqrt{3} x - 6 \\  \\  =  \sf x(x - 2 \sqrt{3} )  +  \sqrt{3} (x - 2 \sqrt{3} ) \\  \\  \sf = (x +  \sqrt{3} )(x - 2 \sqrt{3} )

Therefore , zeroes of the given polynomial will be :

  \sf \implies x +  \sqrt{3}  = 0 \:  \: and \:  \implies x - 2 \sqrt{3}  =  0 \\  \\  \sf \implies x = -   \sqrt{3}  \:  \: and \implies x = 2 \sqrt{3}

Answered by Unacademy
2

\sf{\underline{\boxed{\green{\large{\bold{ Solution}}}}}}

\sf\implies x^2 - \sqrt 3 x - 6 = 0

⠀⠀⠀⠀⠀⠀⠀

compare the eq with \sf{\underline{\bold{ax^2 + bx + c = 0 }}}

⠀⠀⠀⠀⠀⠀⠀

☯ a = 1

☯ b = -√3

☯ c = -6

⠀⠀⠀⠀⠀⠀⠀

now :-

⠀⠀⠀⠀⠀⠀⠀

\sf{\underline{\boxed{\pink{\large{\mathfrak{x =  \dfrac{ - b \pm \sqrt D }{2a }}}}}}}

⠀⠀⠀⠀⠀⠀⠀

\sf{\underline{\boxed{\pink{\large{\mathfrak{ D =  b^2 - 4ac }}}}}}

⠀⠀⠀⠀⠀⠀⠀

finding value of D.

⠀⠀⠀⠀⠀⠀⠀

\sf\implies D = b^2 - 4ac

\sf\implies D = (-√3)^2 - 4 \times 1 \times -6

\sf\implies D = 3 + 24

\sf\implies D = 27

\sf{\underline{\boxed{\blue{\large{\bold{ D = 27}}}}}}

⠀⠀⠀⠀⠀⠀⠀

putting values in the eq.

⠀⠀⠀⠀⠀⠀⠀

\sf\implies x = \dfrac{ -( -\sqrt 3)  \pm\sqrt {27} }{2\times 1 }

\sf\implies x = \dfrac{ \sqrt 3 \pm 3\sqrt 3}{2}

⠀⠀⠀⠀⠀⠀⠀

 \sf x = \dfrac{ \sqrt 3 + 3\sqrt 3 }{ 2 }

\implies x =  \dfrac {4\sqrt 3}{2}

\implies x = 2\sqrt 3

\sf{\underline{\boxed{\purple{\large{\bold{ x = 2\sqrt 3 }}}}}}

⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀

 \sf x = \dfrac{ \sqrt 3 - 3\sqrt 3 }{ 2 }

\implies x =  \dfrac {-2\sqrt 3}{2}

\implies x = - \sqrt 3

\sf{\underline{\boxed{\purple{\large{\bold{ x = - \sqrt 3 }}}}}}

⠀⠀⠀⠀⠀⠀⠀

\sf{\underline{\boxed{\purple{\large{\bold{ x = 2\sqrt 3 \: or \:-  \sqrt 3 }}}}}}

Similar questions