Math, asked by lacsanica014, 6 months ago

x²-3x/ x+3x-10 x x²-4/x²-x-6 rational algebraic expression

Answers

Answered by MaheswariS
1

\underline{\textbf{Given:}}

\mathsf{\dfrac{x^2-3x}{x^2+3x-10}{\times}\dfrac{x^2-4}{x^2-x-6}}

\underline{\textbf{To simplify:}}

\mathsf{\dfrac{x^2-3x}{x^2+3x-10}{\times}\dfrac{x^2-4}{x^2-x-6}}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{\dfrac{x^2-3x}{x^2+3x-10}{\times}\dfrac{x^2-4}{x^2-x-6}}

\textsf{Factorizing the denominators, we get}

\mathsf{=\dfrac{x(x-3)}{(x+5)(x-2)}{\times}\dfrac{x^2-2^2}{(x-3)(x+2)}}

\mathsf{Using\;the\;identity,}\;\;\boxed{\bf\,a^2-b^2=(a-b)(a+b)}

\mathsf{=\dfrac{x(x-3)}{(x+5)(x-2)}{\times}\dfrac{(x-2)(x+2)}{(x-3)(x+2)}}

\textsf{Cancelling like factors on both numerator and denominator,}

\mathsf{we\;get}

\mathsf{=\dfrac{x}{x+5}}

\implies\mathsf{\dfrac{x^2-3x}{x^2+3x-10}{\times}\dfrac{x^2-4}{x^2-x-6}=\dfrac{x}{x+5}}

Similar questions