Math, asked by lacsanica014, 5 months ago

x²-3x/x²+3x-10 x x²-4/x²-x-6 rational algebraic expression. with a concrete solutions​

Answers

Answered by pulakmath007
4

SOLUTION

TO SIMPLIFY

\displaystyle \sf{  \frac{ {x}^{2} - 3x }{ {x}^{2} + 3x - 10 } \:  \times  \:  \frac{ {x}^{2}  - 4}{ {x}^{2}  - x - 6}   }

EVALUATION

Here the given expression is

\displaystyle \sf{  \frac{ {x}^{2} - 3x }{ {x}^{2} + 3x - 10 } \:  \times  \:  \frac{ {x}^{2}  - 4}{ {x}^{2}  - x - 6}   }

We simplify it as below

\displaystyle \sf{  \frac{ {x}^{2} - 3x }{ {x}^{2} + 3x - 10 } \:  \times  \:  \frac{ {x}^{2}  - 4}{ {x}^{2}  - x - 6}   }

\displaystyle \sf{   = \frac{ x(x - 3) }{ {x}^{2} + (5 - 2)x - 10 } \:  \times  \:  \frac{ {x}^{2}  -  {2}^{2} }{ {x}^{2}  - (3 - 2)x - 6}   }

\displaystyle \sf{   = \frac{ x(x - 3) }{ {x}^{2} + 5x - 2x - 10 } \:  \times  \:  \frac{ {x}^{2}  -  {2}^{2} }{ {x}^{2}  - 3x  +  2x - 6}   }

\displaystyle \sf{   = \frac{ x(x - 3) }{ x(x + 5) - 2(x + 5) } \:  \times  \:  \frac{(x + 2)(x - 2) }{ x(x - 3) + 2(x - 3)}   }

\displaystyle \sf{   = \frac{ x(x - 3) }{ (x + 5) (x  - 2) } \:  \times  \:  \frac{(x + 2)(x - 2) }{ (x - 3) (x  + 2)}   }

\displaystyle \sf{   = \frac{ x }{ (x + 5)  }  }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Identify the algebraic linear equations from the given expressions. (a) x2 + x = 2 (b) 3x + 5 = 11 (c) 5 + 7 = 12 (d) x ...

https://brainly.in/question/20800358

2. Which of the following is a linear equation :

a) x2+1 b) y+y2 c) 4 d) 1+z

https://brainly.in/question/10711037

Similar questions