Math, asked by jabalpuri111, 10 months ago

(x2 + 4x + 3) = (x + 3)​

Answers

Answered by spacelover123
6

Method 1: Solve by Factoring

Let's solve your equation step-by-step.

(x^2+4x+3)=(x+3)

Step 1: Subtract x+3 from both sides.

(x^2+4x+3)-(x+3)=(x+3)-(x+3)

x^2+3x=0

Step 2: Factor left side of the equation.

x(x+3)=0

Step 3: Set factors equal to 0.

x=0\ or \ x+3=0

x=0\ or \ x=-3

Method 2: Solve with the Quadratic Formula

Let's solve your equation step-by-step.

(x^2+4x+3)=(x+3)

Step 1: Subtract x+3 from both sides.

(x^2+4x+3)-(x+3)=(x+3)-(x+3)

x^2+3x=0

For this equation:

a=1\\ b=3\\ c=0

1x^2+3x+0=0

Step 2: Use quadratic formula with a=1, b=3, c=0.

x=\frac{-b\±\sqrt{b^2-4ac} }{2a}

x=\frac{-(3)\± \sqrt{3^2-4(1)(0)} }{2(1)}

x=\frac{-3\± \sqrt{9}  }{2}

x=0\ or \ x=-3

Method 3: Solve by Completing Square

Let's solve your equation step-by-step.

x^2+4x+3=x+3

Step 1: Subtract x from both sides.

x^2+4x+3-x=x+3-x

x^2+3x+3=3

Step 2: Subtract 3 from both sides.

x^2+3x+3-3=3-3

x^2+3x=0

Step 3: The coefficient of 3x is 3. Let b=3.

Then we need to add (\frac{b}{2} )^2=\frac{9}{4} to both sides to complete the square.

Add \frac{9}{4} to both sides.

x^2+3x+\frac{9}{4} =0+\frac{9}{4}

x^2+3x+\frac{9}{4}=\frac{9}{4}

Step 4: Factor left side.

(x+\frac{3}{2})^2=\frac{9}{4}

Step 5: Take the square root.

x+\frac{3}{2}=\± \sqrt{\frac{9}{4} }

Step 6: Add \frac{-3}{2} to both sides.

x+\frac{3}{2}+\frac{-3}{2} =\frac{-3}{2} \± \sqrt{\frac{9}{4} }

x=\frac{-3}{2} \±\sqrt{\frac{9}{4} }

x=0\ or \ x=-3

x=0\ or \ x=-3 in the equation ⇒ (x^2+4x+3)=(x+3)

Similar questions