Math, asked by sreeshanthsai10, 8 months ago

x² + 5x-6=0 quadratic formula

Answers

Answered by InfiniteSoul
4

\sf{\underline{\boxed{\green{\large{\bold{ Question}}}}}}

  • solve the equation using formulae \sf x^2 + 5x -6 = 0

⠀⠀⠀⠀⠀⠀⠀

\sf{\underline{\boxed{\green{\large{\bold{ Solution}}}}}}

\sf\implies x^2 + 5x - 6 = 0

⠀⠀⠀⠀⠀⠀⠀

  • compare the eq with \sf{\underline{\bold{ax^2 + bx + c = 0 }}}

⠀⠀⠀⠀⠀⠀⠀

☯ a = 1

☯ b = 5

☯ c = -6

⠀⠀⠀⠀⠀⠀⠀

now :-

⠀⠀⠀⠀⠀⠀⠀

\sf{\underline{\boxed{\pink{\large{\mathfrak{x =  \dfrac{ - b \pm \sqrt D }{2a }}}}}}}

⠀⠀⠀⠀⠀⠀⠀

\sf{\underline{\boxed{\pink{\large{\mathfrak{ D =  b^2 - 4ac }}}}}}

⠀⠀⠀⠀⠀⠀⠀

  • finding value of D.

⠀⠀⠀⠀⠀⠀⠀

\sf\implies D = b^2 - 4ac

\sf\implies D = (5)^2 - 4 \times 1 \times -6

\sf\implies D = 25 + 24

\sf\implies D = 49

\sf{\underline{\boxed{\blue{\large{\bold{ D = 49}}}}}}

⠀⠀⠀⠀⠀⠀⠀

  • putting values in the eq.

⠀⠀⠀⠀⠀⠀⠀

\sf\implies x = \dfrac{ -b \pm\sqrt D }{2a}

\sf\implies x = \dfrac{ -(5)  \pm\sqrt {49} }{2\times 1 }

\sf\implies x = \dfrac{ -5 \pm 7 }{2}

⠀⠀⠀⠀⠀⠀⠀

 \sf x = \dfrac{ -5 + 7 }{ 2 }

\implies x =  \dfrac {2}{2}

\implies x = 1

\sf{\underline{\boxed{\purple{\large{\bold{ x = 1 }}}}}}

⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀

 \sf x = \dfrac{ -5 -7 }{ 2 }

\implies x =  \dfrac {-12}{2}

\implies x = -6

\sf{\underline{\boxed{\purple{\large{\bold{ x = -6 }}}}}}

⠀⠀⠀⠀⠀⠀⠀

\sf{\underline{\boxed{\purple{\large{\bold{ x =1 \: or \:-6 }}}}}}

Similar questions