Math, asked by iamsnk03, 2 months ago

x²–6x+3=0 by completing the square

Answers

Answered by saniyaamulla13
0

Step-by-step explanation:

x^2 - 6x + 3 = 0

=> x^2 - 6x = - 3

=> x^2 - 6x + 3^2 = - 3 + 3^2

=> ( x - 3)^2 = - 3 +9

=> ( x - 3)^2 = 6

=> x - 3 = plus minus sqrt 6

=> x = 3 plus minus sqrt6

Alpha = 3 + sqrt6

Beta = 3 - sqrt6

Answered by Anonymous
12

 \boxed{ \underline{ \red\ast\tt{ \: Solution \: \:  \red\ast}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\Rightarrow\footnotesize\tt\red{By  \: Completing  \: Square \:  Method}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \Rightarrow \footnotesize \tt{x ^{2}   - 6x+ 3 = 0}

 \Rightarrow \small \tt{(x -  \frac{6}{2})^{2}   -  (\frac{6}{2} )^{2}  + 3 = 0}

 \Rightarrow \small \tt{(x -  \cancel \frac{6}{2})^{2}   -  (\cancel \frac{6}{2} )^{2}  + 3 = 0}

 \Rightarrow \footnotesize \tt{(x - 3)^{2}   -  (3 )^{2}  + 3 = 0}

 \Rightarrow \footnotesize \tt{(x - 3)^{2}   - 9 + 3 = 0}

 \Rightarrow \footnotesize \tt{(x - 3)^{2}   - 6= 0}

 \Rightarrow \footnotesize \tt{(x - 3)^{2}  = 6}

 \Rightarrow \footnotesize \tt{x - 3 =  \sqrt{6} }

 \Rightarrow \footnotesize \tt{x  = 3   \:  \: \pm \: \sqrt{6} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\boxed{  \underline{ \Rightarrow\footnotesize \tt  \red{x  = 3    +  \sqrt{6} }}}

\boxed{  \underline{ \Rightarrow\footnotesize \tt \red{x  = 3      -   \sqrt{6} }}}

Similar questions