Math, asked by ayushak030, 1 day ago

x² - 6x +4=0 find the root of quadratic formula​

Answers

Answered by BrainlyPhantom
20

Given quadratic equation:

x² - 6x + 4=0

To Find:

The roots using quadratic formula

Solution:

In x² - 6x + 4=0,

a = 1, b = -6, c = 4

Discriminant (D) = b² - 4ac

= (-6)² - 4 x 1 x 4

= 36 - 16

= 20

Now, applying the quadratic formula which is:

\sf{\longrightarrow\:\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}}

Substituting the values, we get:

\sf{\longrightarrow\:\dfrac{6\pm\sqrt{20}}{2}}

\sf{\longrightarrow\:\dfrac{6\pm2\sqrt5}{2}}

\sf{\longrightarrow\:\dfrac{2(3\pm\sqrt5)}{2}}

Cancelling the 2s in the numerator and denominator,

\sf{\longrightarrow\:3\pm\sqrt5}

The roots are 3 + √5 and 3 - √5.

Final answer:

The roots are 3 + √5 and 3 - √5.

Things to note:

- No real roots will exist if discriminant is less than 0.

- There will be two real and equal roots if the discriminant is equal to 0.

- There will be two distinct and real roots if the discriminant is greater than 0.

Answered by SparklingThunder
4

 \sf \purple{ \spades \: Given : } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\   \:  \:  \:  \:  \:  \:  \: \bullet \:    \:  \: \tt{x}^{2}  - 6x + 4 = 0  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \: \\  \sf \purple{ \spades \:  To \:  find: }   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \:  \:  \:  \:  \:  \:  \: \bullet \:  \:  \sf Roots \:  of \:  quadratic \:  equation

 \sf \purple{ \spades \:Solution  : } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \sf \: Quadratic \:  Formula

 \tt \: x =  \frac{ - b \:  \pm \sqrt{ {b}^{2} - 4ac } }{2a}

where a = 1 , b = -6 and c = 4.

 \tt \: x =  \frac{  \cancel- ( \cancel- 6) \:  \pm \sqrt{ ({ - 6})^{2} - 4(1)(4) } }{2(1)}  \\  \tt \: x =  \frac{  6 \:  \pm \sqrt{ 36 - 16 } }{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\

\tt \: x =  \frac{  6 \:  \pm \sqrt{ 20 } }{2} \\ \tt \:x =  \frac{6  \: \pm2 \sqrt{5} }{2}  \\ \tt \:x =  \frac{ \cancel2(3  \: \pm \sqrt{5}) }{\cancel2}  \\  \tt \: x = 3  \: \pm  \sqrt{5}    \\  \small{ \sf \: Roots \:  of \:  the \:  quadratic \:  equation  \: are : }\\  \boxed{\tt \:x =3 +  \sqrt{5}} \sf \: and \:  \boxed{\tt \:x =3 -  \sqrt{5}}

Similar questions