Math, asked by kumarshivansh241, 2 months ago

x²-6x + 9=0 by quadratic formula​

Answers

Answered by Anonymous
10

Answer :

  • x = 3

Given :

  • x² - 6x + 9 = 0

To find :

  • Roots of the equation

Solution :

》x² - 6x + 9 = 0

by using the quadratic formula

Compare ax² + bx + c

》x =  -b ± √b²- 4ac / 2a

Where ,

  • a = 1
  • b = - 6
  • c = 9

》x =  -b ± √b²- 4ac / 2a

》x =  -6 ± √(-6)²- 4(1)(9) / 2(1)

》x =  -6 ± √36 - 36  / 2

》x = 3 ± 0

》x = 3

or

》x² - 6x + 9 = 0

》x² - 3x - 3x + 9 = 0

》x(x - 3) - 3(x - 3) = 0

》(x - 3)² = 0

》x - 3 = 0 or x = 3

Hence, x² - 6x + 9 = 0 is x = 3

Answered by SavageBlast
79

Given Equation:-

  • x² - 6x + 9 = 0

To Find:-

  • It's Roots

Formula used:-

  • Quadratic Formula {\boxed{x=\dfrac{-b±\sqrt{b^2-4ac}}{2a}}}

Solution:-

Comparing the given equation with standard equation i.e. ax² + bx + c = 0. We get,

  • a = 1

  • b = -6

  • c = 9

Putting the values in the Formula,

\implies\:x=\dfrac{-b±\sqrt{b^2-4ac}}{2a}

\implies\:x=\dfrac{-(-6)±\sqrt{(-6)^2-4(1)(9)}}{2(1)}

\implies\:x=\dfrac{-6±\sqrt{36-36}}{2}

\implies\:x=\dfrac{-6±\sqrt{0}}{2}

\implies\:x=\dfrac{-6}{2}

{\boxed{\implies\:x=-3}}

Hence, The root of the given equation is -3.

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions