Math, asked by smilingcutie, 9 months ago

X²+7x+10 verify the relationship ​

Answers

Answered by iamsanjay1111
6

✪AnSwEr

{\tt{\red{\underline{\large{Given}}}}}

A polynomial

X²+7x+10

{\sf{\green{\underline{\large{To\:Verify}}}}}

Relationship between cofficient

{\sf{\pink{\underline{\Large{Explanation}}}}}

Let the zeroes of the polynomial be

\tt\alpha{and}\betaαandβ</p><p>

Then,

\tt\alpha{+}\beta\frac{-b}{a}

\tt\alpha{\times}\beta{=}\frac{c}{a}

Here,

a=1

b=7

C=10

\tt\alpha{+}\beta=\dfrac{{-b}}{a}\dfrac{-1}{7}

\tt\alpha{+}\beta{=}\dfrac{-(Cofficient\:of\:X)}{Cofficient\:of\:x^2}

\tt\alpha{\times}\beta{=}\dfrac{10}{1}</p><p>

\tt{\large\alpha{\times}\beta{=}\dfrac{Constant\:term}{Cofficient\:of\:x^2}}

Hence,relation verified

Answered by Anonymous
9

{\tt{\pink{\underline{\large{Given}}}}}

A polynomial X²+7x+10

{\sf{\blue{\underline{\large{To\:Verify}}}}}

  • Relationship between the cofficient

{\sf{\orange{\underline{\Large{Explanation}}}}}

  • Let the zeroes of the polynomial be\tt\alpha{and}\beta

Then,

\tt\alpha{+}\beta\frac{-b}{a}

&

\tt\alpha{\times}\beta{=}\frac{c}{a}

Here,

a=1

b=7

C=10

\tt\alpha{+}\beta=\dfrac{{-b}}{a}\dfrac{-1}{7}

\tt\alpha{+}\beta{=}\dfrac{-(Cofficient\:of\:X)}{Cofficient\:of\:x^2}

&

\tt\alpha{\times}\beta{=}\dfrac{10}{1}

\tt{\large\alpha{\times}\beta{=}\dfrac{Constant\:term}{Cofficient\:of\:x^2}}

→Hence,verified✓✓

Similar questions