Math, asked by ItzUnknownQueen, 8 months ago

X²+7x+10 verify the relationship ​

Answers

Answered by Anonymous
4

{\tt{\pink{\underline{\large{Given}}}}}

A polynomial X²+7x+10

{\sf{\blue{\underline{\large{To\:Verify}}}}}

Relationship between the cofficient

{\sf{\orange{\underline{\Large{Explanation}}}}}

Let the zeroes of the polynomial be\tt\alpha{and}\beta

Then,

\tt\alpha{+}\beta\frac{-b}{a}

&

\tt\alpha{\times}\beta{=}\frac{c}{a}

Here,

a=1

b=7

C=10

\tt\alpha{+}\beta=\dfrac{{-b}}{a}\dfrac{-1}{7}

\tt\alpha{+}\beta{=}\dfrac{-(Cofficient\:of\:X)}{Cofficient\:of\:x^2}

&

\tt\alpha{\times}\beta{=}\dfrac{10}{1}

\tt{\large\alpha{\times}\beta{=}\dfrac{Constant\:term}{Cofficient\:of\:x^2}}

→Hence,verified✓✓

Answered by sethrollins13
16

Given :

  • A polynomial x²+7x+10.

To Find :

  • Zeroes of the polynomial and verify its relationship.

Solution :

\longmapsto\tt\bf{{x}^{2}+7x+10}

By Splitting Middle Term :

\longmapsto\tt{{x}^{2}+5x+2x+10}

\longmapsto\tt{x(x+5)+2(x+5)}

\longmapsto\tt{(x+2)\:(x+5)}

  • x = -2
  • x = -5

So , -2 and -5 are the zeroes of polynomial x²+7x+15...

_______________________

Here :

  • a = 1
  • b = 7
  • c = 10

Sum of Zeroes :

\longmapsto\tt{\alpha+\beta=\dfrac{-b}{a}}

\longmapsto\tt{-2+(-5)=\dfrac{-7}{1}}

\longmapsto\tt{-2-5=-7}

\longmapsto\tt\bf{-7=-7}

Product of Zeroes :

\longmapsto\tt{\alpha\beta=\dfrac{c}{a}}

\longmapsto\tt{-2\times{-5}=\dfrac{10}{1}}

\longmapsto\tt\bf{10=10}

HENCE VERIFIED

Similar questions