Math, asked by dibyasundarmajumder, 10 months ago

x²+(a+1/a)x+1=0 by completing square method​

Answers

Answered by Anonymous
12

Answer:

- a, - 1/a are the roots of the equation.

Step-by-step explanation:

Given Equation :

 \sf  \Rightarrow x^{2}  +  \bigg(a +  \dfrac{1}{a}  \bigg)  + 1 = 0

Transposing 1 to RHS

 \sf  \Rightarrow x^{2}  +  \bigg(a +  \dfrac{1}{a}  \bigg)   =  - 1

It can be written as

 \sf  \Rightarrow x^{2}  +  2\bigg( \dfrac{a}{2}  +  \dfrac{1}{2a}  \bigg)   =  - 1

Adding ( a/2 + 1/2a )² on both sides

 \sf  \Rightarrow x^{2}  +  2\bigg( \dfrac{a}{2}  +  \dfrac{1}{2a}  \bigg)  +  \bigg( \dfrac{a}{2}    +  \dfrac{1}{2a} \bigg)^{2}  =  - 1 +  \bigg( \dfrac{a}{2}    +  \dfrac{1}{2a} \bigg)^{2}

Since ( p + q )² = p² + q² + 2pq

 \sf  \Rightarrow  \bigg(x + \dfrac{a}{2}    +  \dfrac{1}{2a} \bigg)^{2}  =  - 1 +   \bigg( \dfrac{a}{2} \bigg) ^{2}    +   \bigg(\dfrac{1}{2a} \bigg)^{2}  +  \dfrac{1}{2}

 \sf  \Rightarrow  \bigg(x + \dfrac{a}{2}    +  \dfrac{1}{2a} \bigg)^{2}  =   \bigg( \dfrac{a}{2} \bigg) ^{2}    +   \bigg(\dfrac{1}{2a} \bigg)^{2}   -   \dfrac{1}{2}

To make a perfect square on RHS write 1/2 as 2( a/2 )( 1/2a )

 \sf  \Rightarrow  \bigg(x + \dfrac{a}{2}    +  \dfrac{1}{2a} \bigg)^{2}  =   \bigg( \dfrac{a}{2} \bigg) ^{2}    +   \bigg(\dfrac{1}{2a} \bigg)^{2}   -   2 \bigg(\dfrac{a}{2}  \bigg) \bigg( \dfrac{1}{2a}  \bigg)

Using identity p² + q² - 2pq = ( p - q )²

 \sf  \Rightarrow  \bigg(x + \dfrac{a}{2}    +  \dfrac{1}{2a} \bigg)^{2}  =   \bigg( \dfrac{a}{2}  -    \dfrac{1}{2a}   \bigg) ^{2}

Taking square root on both sides

 \sf  \Rightarrow x + \dfrac{a}{2}    +  \dfrac{1}{2a} =   \pm \bigg( \dfrac{a}{2}  -    \dfrac{1}{2a}   \bigg)

 \sf  \Rightarrow x + \dfrac{a}{2}    +  \dfrac{1}{2a} =    \dfrac{a}{2}  -    \dfrac{1}{2a}  \qquad OR \qquad x + \dfrac{a}{2}    +  \dfrac{1}{2a} =    -  \bigg( \dfrac{a}{2}  -    \dfrac{1}{2a}   \bigg)

 \sf  \Rightarrow x  +   \dfrac{1}{2a}  =   -    \dfrac{1}{2a}  \qquad OR \qquad x + \dfrac{a}{2}   =    -   \dfrac{a}{2}

 \sf  \Rightarrow x   =  -  \dfrac{1}{2a}    -    \dfrac{1}{2a}  \qquad OR \qquad x  =  - \dfrac{a}{2}      -   \dfrac{a}{2}

 \sf  \Rightarrow x   =  -  \dfrac{1}{a}   \qquad OR \qquad x  =  -a

Hence the roots of the equation are - a and - 1/a.

Similar questions