x2
a2
2
2. Prove that for the ellipse
+
= 1, if x = asino,
b2
ds
V1 - e-sinad
do
ro
Answers
Answered by
0
Step-by-step explanation:
Given hyperbola is,
144
x
2
−
81
y
2
=
25
1
⇒
144/25
x
2
−
81/25
y
2
=1
⇒a
2
=
25
144
,b
2
=
25
81
,e=
1+
a
2
b
2
=
1+
144
81
=
12
15
∴ foci of hyperbola are (±ae,0)i.e(±3,0)
Now given ellipse is
16
x
2
+
b
2
y
2
=1
⇒a
2
=16
Assume eccentricity of this ellipse is e
′
then its foci are (±ae
′
,0)i.e(±4e
′
,0)
Given foci of given hyperbola and ellipse coincide
⇒4e
′
=3⇒e
′
=
4
3
For ellipse, using eccentricity relationship, e
′2
=1−
a
2
b
2
⇒
16
9
=1−
16
b
2
∴b
2
please give me brainliest
=7
Similar questions