X²/a² - Y²/b² = 1
Make Y the subject of the Formula.
plzzzzz help fastttt
Answers
Answered by
8
[tex] \frac{ x^{2} b^{2} - y^{2} a^{2} }{ a^{2} b^{2} } =1 \\ \\
a^{2} b^{2}=x^{2} b^{2} - y^{2} a^{2} \\ \\ a^{2} b^{2}+y^{2} a^{2}=x^{2} b^{2} \\ \\
x^{2} b^{2}-a^{2} b^{2}=y^{2} a^{2} \\ \\
x^{2} b^{2}-a^{2} b^{2} =(xb+ab)(xb-ab) \\
\\ \frac{ (xb+ab)(xb-ab)}{ a^{2} } =y^{2} \\ \\
y= \sqrt{\frac{ (xb+ab)(xb-ab)}{ a^{2} }} [/tex]
Answered by
8
x²/a² - y²/b² = 1
x²/a² - 1 = y²/b²
y² = (x²/a² - 1)b²
y = √[(x²/a² - 1)b²]
= √[(x² - a²)/a²]b²
= √[(x²b² - a²b²)/a²]
y= √[(xb)² - (ab)²/a²]
As, (a² - b²) = (a+b)(a-b), (xb)² - (ab)² = (xb + ab)(xb - ab)
So,
y = √[(xb+ab)(xb-ab)/a²]
x²/a² - 1 = y²/b²
y² = (x²/a² - 1)b²
y = √[(x²/a² - 1)b²]
= √[(x² - a²)/a²]b²
= √[(x²b² - a²b²)/a²]
y= √[(xb)² - (ab)²/a²]
As, (a² - b²) = (a+b)(a-b), (xb)² - (ab)² = (xb + ab)(xb - ab)
So,
y = √[(xb+ab)(xb-ab)/a²]
Similar questions