Physics, asked by anonymousx, 10 months ago

x²= at²+bt³

y³= at⁴+bt⁸
How will we differentiate both sides with respect to t (two seperate equation)​

Answers

Answered by Nereida
7

Answer:

\longrightarrow\sf{\dfrac{dx}{dt} = \dfrac{2at+3bt^{2}}{2x}}

\longrightarrow\sf{\dfrac{dy}{dt} = \dfrac{4at^{3} +8bt^{7}}{3y^{2} }}

\longrightarrow\sf{\dfrac{dx}{dy} = \dfrac{8at^{3}x+16bt^{7}x}{6aty^{2}+9bt^{2}y^{2}}}

Explanation:

First equation given : \sf{x^{2} =at^{2} +bt^{2}. }

Hence, \sf{\dfrac{d(x^{2})}{dt}=\dfrac{d(at^{2}+bt^{3})}{dt}}

\leadsto \sf{2x\times\dfrac{dx}{dt}=2at+3bt^{2} }

\longrightarrow\bf{\dfrac{dx}{dt} = \dfrac{2at+3bt^{2}}{2x}}.....(1)

Second equation given : \sf{y^{3} =at^{4} +bt^{8}. }

Hence,\sf{\dfrac{d(y^{3})}{dt}=\dfrac{d(at^{4}+bt^{8})}{dt}}

\leadsto \sf{3y^{2} \times\dfrac{dy}{dt}=4at^{3} +8bt^{7} }

\longrightarrow\bf{\dfrac{dy}{dt} = \dfrac{4at^{3} +8bt^{7}}{3y^{2}}}.....(2)

Now, Dividing (2) by (1).

\longrightarrow\sf{\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}} =\dfrac{dy}{dt}\times\dfrac{dt}{dx} = \dfrac{dy}{dx}}

Hence,

\leadsto\sf{\dfrac{4at^{2}+8bt^{7}}{3y^{2}} \times \dfrac{2x}{2at+3bt^{2}}}

\longrightarrow\red{\tt{\dfrac{dy}{dx} = \dfrac{8at^{3}x+16bt^{7}x}{6aty^{2}+9bt^{2}y^{2}}}}

Answered by Anonymous
7

\huge{\orange{\fbox{\green{\fbox{\mathcal{\orange{An}\blue{sw}\green{er}}}}}}}

\large{\orange{\fbox{\green{\fbox{\mathcal{\orange{No}\green{te}}}}}}}

  • Refer the attachment

Attachments:
Similar questions