Math, asked by Aayush111108272, 1 month ago

x² dy + xy dx = sqrt(1 – x²y²) dx

solve differential equation​

Answers

Answered by senboni123456
3

Step-by-step explanation:

We have,

 {x}^{2} dy + xydx =  \sqrt{1  -   {x}^{2} {y}^{2}  } dx \\

  \implies \: x(x dy + ydx) =  \sqrt{1  -   {x}^{2} {y}^{2}  } dx \\

  \implies \: x.d(xy) =  \sqrt{1  -   {x}^{2} {y}^{2}  } dx \\

  \implies \: \frac{d(xy) }{ \sqrt{1 -  {x}^{2} {y}^{2}  } }=   \frac{ dx }{x}\\

Integrating both sides,

  \implies \: \int\frac{d(xy) }{ \sqrt{1 -  {x}^{2} {y}^{2}  } }= \int   \frac{ dx }{x}\\

  \implies \: \sin ^{ - 1} (xy) =  ln(x)+c \\

Similar questions