Math, asked by vaidehijadhav2803, 11 months ago

x2 - (m - 3)x + m = 0 find the value of m​

Answers

Answered by BrainlyConqueror0901
7

{\bold{\underline{\underline{Answer:}}}}

{\bold{\therefore m=1\:and\:9}}

{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \underline \bold{Given : } \\  \implies  {x}^{2}  - (m - 3)x + m = 0 \\  \\  \underline \bold{To \: Find : } \\  \implies Value \: of \: m = ?

• According to given question :

 \bold{By \: quadratic \: formula : } \\  \implies  D=  {b}^{2}  - 4ac = 0 \:\:\:\bold{(equal\:roots)}\\  \\  \implies (m - 3)^{2}  - 4 \times 1 \times m = 0 \\  \\  \implies  {m}^{2}  +  {3}^{2}  - 2 \times m \times 3 - 4m = 0 \\  \\  \implies  {m}^{2}  + 9 - 6m - 4m = 0 \\  \\  \implies  {m}^{2}  - 10m + 9 = 0 \\  \\  \bold{Using \: middle \: term \: spliting : } \\  \implies  {m}^{2}  - 9m - m + 9 = 0 \\  \\  \implies  m(m - 9) - 1(m - 9) = 0 \\  \\  \implies (m - 1)(m - 9) = 0 \\  \\   \bold{\implies m = 1 \: and \: 9 }

Answered by Anonymous
64

Correct Question:

Find the value of m so that the quadratic equation x² - (m - 3)x + m = 0 has equal roots.

Solution:

Given Equation:

=> x² - (m - 3)x + m = 0

When b² - 4ac = 0, then only roots are equal. So,

=> b² - 4ac = 0

Here, a = x², b = -(m - 3) and c = m

So, put the value in above condition we get,

=> [-(m - 3)]² - 4 × 1 × m = 0

=> (m + 3)² - 4m = 0

=> m² + 9 - 6m - 4m = 0

=> m² + 9 - 10m

Now, By using splitting middle term method.

=> m² - 10m + 9 = 0

=> m² - 9m - m + 9 = 0

=> m( m - 9) - 1(m - 9) = 0

=> (m - 1) (m - 9)

=> m = 1 and 9

So, value of m is 1 and 9.

Similar questions