x2 - (root3 + 1)x +root 3 = 0
solve using quadratic formula.
Answers
X-(√3+1)X+√3=0
=X2-√3x - 1 × X + √3=0
[√3×1=√3 = √3 = -√3 × -1 = (√3+1)=-√3-1]
=X(X-√3)-1 (X-√3)=0
=(X-√3)(X-1)=0
=X-√3=0 or X-1=0
=X=√3 or X=1
X-1 and X=√3 are the two roots of the given
quadratic equation
Explanation:
The coefficient of x² is 'a', the coefficient of x is 'b' and the constant term is 'c'.
So, a= 1 ( since there is no coefficient given)
b= - (✓3 +1)
c=✓3
Discriminant= b²-4ac
Substitute the values of a, b and c
D= -(✓3+1)²-4* 1* ✓3
= (✓3)²+ 2* ✓3* 1+ 1²- 4✓3
= (✓3)² + 2✓3 + (1)²- 4✓3
=(✓3)²+(1)²-2✓3
=(✓3-1)²
Quadratic formula= (-b+-✓b²-4ac)/2a
Substitute the values of a, b and c
- -(✓3+1) +-✓(✓3-1)²
Or, +(✓3+1) +- (✓3-1) /2
First we take,
(✓3+1+✓3-1) /2
2✓3/2
2 gets cancelled
Therefore one root for the equation is ✓3.
Next we take,
✓3+1-(✓3-1) /2
✓3+1-✓3+1 /2
✓3 gets cancelled
2/2
1
So the second root for the equation is 1.
Hope this helps!!!