Math, asked by pavithra771, 11 months ago

x²+ x+7 by formula method(-b±√b²-4ac/2a)

Answers

Answered by chinni123410
0

Step-by-step explanation:

a=1

b=1

c=7

x=-b±√b²-4ac/2a

-1±√(1)²-4×1×7/2×1

-1±√1-28/2

-1±√-27/2

-1±√-3×-3×-3/2

-1±3√3/2

x=-1+3√3/2

or

x°-1-3√3/2

Answered by amitkumar44481
1

 \tt  \large\blue{Solution:-}

 \:  \:  \:  \:  \:  \:   \tt{{x}^{2}  + x + 7.}

 \tt{Where as, }</p><p></p><p>  \\  \:  \:  \:  \:  \:  \: \tt{a= 1 , b= 1 c= 7.}

 \:  \:  \:  \:  \:  \:  \tt{ \red{D}_{iscriminate} = {b}^{2} -4ac.}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt{=  {1}^{2}  - 4 \times 1 \times 7}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt{= - 27.}

\rule{200}2

\\ \\  \therefore \: \tt{Let's \:  the  \:  \sqrt{ - 1}  = i.}

 \:  \:  \:  \:  \:  \:  \tt{x = \frac{ -b± \sqrt{ {b}^{2} - 4ac } }{2a} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \tt{=  \frac{ - 1± \sqrt{ - 27} }{2}}

 \:  \:  \:  \:  \:  \:  \:   \tt{=  \frac{ - 1±  \sqrt{ - 27i} }{2}}

 \:  \:  \:  \:  \:  \:  \:  \tt{ =  \frac{ - 1± 3 \sqrt{3i} }{2}}

\rule{200}2

 \\ \\ \tt{Therefore, the  \: value \:  of \:  x  \: is}  \\ \:  \:  \:    \tt{ \frac{ - 1 - 3 \sqrt{3} i}{2}} \:  \pink{or }\:  \frac{ - 1  + 3 \sqrt{3} i}{2}

Similar questions