Math, asked by hdj2424, 8 months ago

x²+x-8
 \leqslant 6

Answers

Answered by BrainlyIAS
9

Answer

  • x ≤ ( √57 - 1 ) / 2

Given

  • x² + x - 8 ≤ 6

To Find

  • x value

Concept Used

  • Completing the square

Solution

\rm x^2+x-8 \leq 6\\\\\implies \rm x^2+x\leq 6+8\\\\\implies \rm x^2+x \leq 14\\\\\implies \rm x^2+2.\dfrac{1}{2}.x \leq 14\\\\\implies \rm x^2+2.\dfrac{1}{2}.x+\bigg(\dfrac{1}{2}\bigg)^2 \leq 14+\bigg(\dfrac{1}{2}\bigg)^2 \\\\  \rm [Since\ ,Adding\ (1/2)^2\ on\ both\ sides]\\\\\implies \rm \bigg(x+\dfrac{1}{2}\bigg)^2 \leq 14+\dfrac{1}{4}\\\\\implies \rm \bigg(x+\dfrac{1}{2}\bigg)^2 \leq \dfrac{57}{4}\\\\\implies \rm x+\dfrac{1}{2} \leq \dfrac{\sqrt{57}}{2}\\\\

\implies \rm x \leq \dfrac{\sqrt{57}}{2}-\dfrac{1}{2}\\\\\implies \bf x \leq \dfrac{(\sqrt{57}-1)}{2}\ \;\; \bigstar

Similar questions