Math, asked by Lsampayo21311, 7 months ago

X2 - x - ( a - 3 ) ( a - 2 )

Answers

Answered by Saby123
6

Factorise : x² - x - ( a - 3)( a - 2 ) .

Solution :

x² - x - (a - 3)( a - 2)

=> x² - [ ( a - 2 ) - ( a - 3 ) ] x - ( a - 3)( a - 2 ) .

=> x² - ( a - 2 )x + ( a - 3 ) x - ( a - 3)( a - 2 )

=> x [ x - a + 2 ] + ( a - 3 ) [ x - a + 2 ]

=> [ x - a + 2 ][ x + a - 3 ] .

This is the required answer .

__________________________________

Additional Information -

( a - b )² = a² - 2ab + b²

( a + b )² = a² + 2ab + b²

( a - b )( a + b ) = a² - b²

( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ac

( a + b - c )² = a² + b² + c² + 2ab - 2bc - 2ac

( a - b + c )² = a² + b² + c² - 2ab - 2bc + 2ac

( -a + b + c )² = a² + b² + c² - 2ab + 2bc - 2ac

___________________________________

Answered by Anonymous
40

Question

 {x}^{2}  - x - (a - 3)(a - 2)

Solution

 {x}^{2}  - x - (a - 3)(a - 2)

 =  >  {x}^{2} ((a - 2) - (a - 3))x - (a - 3)(a - 2)

 =  >  {x}^{2}  - (a - 2)x + (a - 3)x - (a - 3)(a - 2)

 =  >  {x}^{2} (x - a + 2) + (a - 3)(x - a + 2)

 =  > (x - a + 2)(x + a - 3)

Hence, the answer of the equation is (x-a+2)(x+a-3)

 \huge \red{ \boxed{ \underline{extra \: explanation}}}

_______________________________________

(x + y + z) ^{3}  =  {x}^{2}  +  {y}^{2}  +  {z}^{2}  + 2xy + 2yz + 2zx

_______________________________________

(x + y) ^{3}  =  {x}^{3}  +  {y}^{3} + 3xy(x + y)

_______________________________________

(x - y) ^{3}  =  {x}^{3}  -  {y}^{3}  - 3xy(x - y)

_______________________________________

 {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy

_______________________________________

(x - y) ^{2}  =  {x}^{2} +{y}^{2}  - 2xy

_______________________________________

 {x}^{2}  -  {y}^{2}  = (x + y)(x - y)

Similar questions