x²/y+√x²+y²=-ay+b√x²+y² find a and b values
Answers
Answered by
1
Answer:
x=rcosθcosϕ;y=rcosθsinϕ;z=rsinθ
x
2
+y
2
+z
2
=r
2
.
x
2
=r
2
cos
2
θcos
2
ϕ
y
2
=r
2
cos
2
θsin
2
ϕ
z
2
=r
2
sin
2
θ.
r
2
cos
2
θcos
2
ϕ+r
2
cos
2
θsin
2
ϕ+r
2
sin
2
θ=r
2
r
2
(cos
2
θcos
2
ϕ+cos
2
θsin
2
ϕ+sin
2
θ)=r
2
r
2
[cos
2
θ(sin
2
ϕ+cos
2
ϕ)+sin
2
θ]=r
2
r
2
[cos
2
θ(1)+sin
2
θ]=r
2
r
2
(1)=r
2
∴r
2
=r
2
∴ Hence Proved x
2
+y
2
+z
2
=r
2
Similar questions