(x2+ y² + 1) dx - 2xy dy = 0
Solve differential equation
Answers
Answered by
4
Step-by-step explanation:
How do I solve (x²+y²) dx + 2xy dy= 0?
(x2+y2)dx+2xydy=0⇒dydx=−x2+y22xy
This is homogeneous equation
Let,y=vx⇒dydx=v+xdvdx⇒v+xdvdx=−x2+v22x.vx⇒xdvdx=−v−1+v22v⇒xdvdx=−1+3v22v⇒dxx=−2v1+3v2⇒∫dxx=−∫2v1+3v2⇒logx=−13log(1+3v2)+logc⇒logx+13log(1+3v2)=logc⇒logx(1+3v2)13=logc⇒x(1+3v2)13=c⇒x(1+3y2x2)13=c⇒x(x2+3y2x2)13=c
Pulmonary arterial hypertension and telemedicine: What to know.
Use a substitution:⎧⎩⎨⎪⎪u=yxy=uxdy=udx+xdu
(x2+y2)dx+2xydy=0
(x2+(ux)2)dx+2x(ux)(udx+xdu)=0
(x2+u2x2+2u2x2)dx+2ux3du
x2(1+3u2)dx=−2ux3du
1xdx=−2u1+3u2du
∫1xdx=∫−2u1+3u2du
ln|x|=−13ln|1+3u2|+C0
3ln|x|=−ln|1+3u2|+C1
ln|x3|+ln∣∣1+3⋅y2x2∣∣=C1
ln|x3+3xy2|=C1
x3+3xy2=C
Similar questions