x²+y²=1 than prove that (3x-4x³)²+(3y-4y³)²=1
Answers
Answer:
Given : x² + y² = 1
=> 4x² = 4 - 4y² and 4y² = 4 - 4x²
. . .(4x³ - 3x)² + (3y - 4y³)² = [ x * (4x² - 3) ]² + [ y * (3 - 4y²) ]²
=> x² * (4 - 4y² - 3)² + y² * (3 - 4 + 4x²)²
=> x² * (1 - 4y²)² + y² * (4x² - 1)²
=> x² * (1 + 16y^4 - 8y² ) + y² * (16x^4 + 1 - 8x²)
=> x² + 16x²y^4 - 8x²y² + 16x^4 y² + y² - 8x²y²
=> (x² + y²) + 16x²y² ( x² + y²) - 16x²y²
=> 1 + 16x²y² - 16x²y² . . . {As x² + y² = 1 }
=> 1 ===> ANS
================================
ALTERNATIVELY
=> x² * (4x² - 3)² + y² * (3 - 4y²)²
=> x² * (4x² - 3)² + (1 - x²) * [3 - (4 - 4x²)]²
=> x² * (4x² - 3)² - (x² - 1) * ( 4x² - 1)²
=> x² * (4x² - 3)² - x² * ( 4x² - 1)² + ( 4x² - 1)²
=> x² [ (4x² - 3)² - ( 4x² - 1)² ]+ ( 4x² - 1)²
=> x² [ (4x² - 3 + 4x² - 1)(4x² - 3 - 4x² + 1) ] + ( 4x² - 1)²
=> x² * (8x² - 4)(-2) + ( 4x² - 1)²
=> -16x^4 + 8x² + 16x^4 - 8x² + 1
=> 1 (ANS)
=====================================
ALTERNATIVELY
Given : x² + y² = 1
then x can be considered as sin θ and y as cos θ
{Since sin² θ + cos² θ = 1 }
Now, 4x³ - 3x = 4 sin³ θ - 3 sin θ = sin 3θ
and 3y - 4y³ = 3 cos θ - 4 cos³ θ = cos 3θ
=> (4x³ - 3x)² + (3y - 4y³)²
= sin² 3θ + cos² 3θ
= 1 ===> (Ans)