X2+y2=119xy then s.t 2log11+logx+logy
Answers
Answered by
2
Step-by-step explanation:
Given Question:-
X2+y2=119xy then s.t 2log11+logx+logy
Correct Question:-
If x^2+y^2 = 119xy then show that
2log(x+y) = 2 log 11 + log x + log y
Solution:-
Given that :
x^2+y^2 = 119xy
On adding 2xy both sides then
x^2+y^2+2xy = 119xy+2xy
=> x^2+y^2+2xy = 121 xy
=> (x+y)^2 = 121 xy
( Since (a+b)^2 = a^2+2ab+b^2,
Where ,a = x and b = y )
On taking logarithms both sides then
=> log (x+y)^2 = log 121 xy
=> log (x+y)^2 = log ( 11×11×x×y)
=> log (x+y)^2 = log ( 11^2×x×y)
We know that
log ab = log a + log b
=> log (x+y)^2 = log 11^2 + log x + log y
We know that
log a^m = m log a
=> 2 log (x+y) = 2 log 11 + log x + log y
Hence , Proved.
Used formulae:-
- (a+b)^2 = a^2+2ab+b^2
- log ab = log a + log b
- log a^m = m log a
Similar questions