Math, asked by gajulalohitha, 2 months ago

X2+y2=7xythen prove that log x+y/3=1/2logx+logy​

Answers

Answered by Anonymous
55

Answer:

Question:

x² + y² = 7xy prove that x+y/3=1/2logx+logy

Solution:

 : { \implies{ \sf{ {x}^{2} +  {y}^{2} = 7xy  }}} \\  \\ { \sf{Adding  \: 2xy \:  on  \: both  \: sides}} \\  \\  : { \implies{ \sf{ {x}^{2} +  {y}^{2}  + 2xy = 7xy + 2xy }}} \\  \\   : { \implies{ \sf{ {(x + y)}^{2} = 9xy }}} \\  \\   : { \implies{ \sf{(x + y) =  \sqrt{9xy} }}} \\  \\   : { \implies{ \sf{(x + y) = 3 \sqrt{xy} }}} \\  \\   : { \implies{ \sf{ \frac{x + y}{3}  =  {(xy)}^{ \frac{1}{2} } }}} \\  \\ { \sf{Taking \:  Log \:  On \:  Both  \: Sides}} \\  \\  : { \implies{ \sf{log \bigg( \frac{x + y}{3}  \bigg) = log {(xy)}^{ \frac{1}{2} } }}} \\  \\  : { \implies{ \sf{log \bigg( \frac{x + y}{3}  \bigg) =  \frac{1}{2} (logxy)}}} \\  \\ : { \implies{ \sf{log \bigg( \frac{x + y}{3}  \bigg) =  \frac{1}{2} (logx + logy)}}} \:  \\  \\  \rm \: Hence  \: Proved

Used Formulae:

  •  \boxed{ \sf{log {a}^{n}  = n \: loga}}

  •  \boxed{ \sf{logab = loga + logb}}
Similar questions