Math, asked by shashwatshukla221122, 2 days ago

(x2 + y2) dy – (x2 + xy) dx = 0​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given Differential equation is

\rm \: ( {x}^{2}  +  {y}^{2} )dy \:  -  \: ( {x}^{2}  + xy)dx \:  =  \: 0 \\

can be rewritten as

\rm \: ( {x}^{2}  +  {y}^{2} )dy \:  =  \: ( {x}^{2}  + xy)dx \:  \\

\rm \: \dfrac{dy}{dx}  = \dfrac{ {x}^{2}  + xy}{ {x}^{2}  +  {y}^{2} }  \\

Let assume that

\rm \: f(x,y)  = \dfrac{ {x}^{2}  + xy}{ {x}^{2}  +  {y}^{2} }  \\

So,

\rm \: f(kx,ky)  = \dfrac{  {k}^{2} {x}^{2}  +  {k}^{2} xy}{ {k}^{2}{x}^{2}  + {k}^{2} {y}^{2} }  \\

\rm \: f(kx,ky)  = \dfrac{  {k}^{2}( {x}^{2}  +  xy)}{ {k}^{2}({x}^{2}  + {y}^{2} )}  \\

\rm \: f(kx,ky)  = \dfrac{ {x}^{2}  +  xy}{{x}^{2}  + {y}^{2}}  \\

\rm\implies \:f(x,y) = f(kx,ky) \\

\rm\implies \:f(x,y)  \: is \: homogenous \: function \: of \: degree \: 0 \\

So, it means

\rm \: \dfrac{dy}{dx}  = \dfrac{ {x}^{2}  + xy}{ {x}^{2}  +  {y}^{2} }  \: is \: homogeneous \\

To evaluate this Differential equation, we substitute

\rm \: y \:  =  \: vx \\

So, on substituting,

\rm \: \dfrac{d}{dx} (vx) = \dfrac{ {x}^{2}  + x(vx)}{ {x}^{2}  +  {(vx)}^{2} }   \\

\rm \: v\dfrac{d}{dx}x \:  +  \: x\dfrac{d}{dx}v = \dfrac{ {x}^{2}  +  {vx}^{2} }{ {x}^{2}  +   {v}^{2} {x}^{2}   }   \\

\rm \: v \:  +  \: x\dfrac{dv}{dx} = \dfrac{ {x}^{2}(1  + v) }{ {x}^{2}(1  +   {v}^{2})}   \\

\rm \: v \:  +  \: x\dfrac{dv}{dx} = \dfrac{1  + v}{1  +   {v}^{2}}   \\

\rm \:   \: x\dfrac{dv}{dx} = \dfrac{1  + v}{1  +   {v}^{2}} - v   \\

\rm \:   \: x\dfrac{dv}{dx} = \dfrac{1  + v - v -  {v}^{3} }{1  +   {v}^{2}}    \\

\rm \:   \: x\dfrac{dv}{dx} = \dfrac{1 -  {v}^{3} }{1  +   {v}^{2}}    \\

\rm \:   \: \dfrac{1 + {v}^{2} }{1 - {v}^{3}} dv \:  =  \dfrac{dx}{x}    \\

On integrating both sides,

\rm \:   \:\displaystyle\int\rm  \dfrac{1 + {v}^{2} }{1 - {v}^{3}} dv \:  = \displaystyle\int\rm  \dfrac{dx}{x}    \\

Let assume that,

\rm \:   \:I = \displaystyle\int\rm  \dfrac{1 + {v}^{2} }{1 - {v}^{3}} dv \:  \\

Let

\rm \:   \:  \dfrac{1 + {v}^{2} }{(1 - v)(1 + v +  {v}^{2}) }  \:   = \dfrac{a}{1 - v}  + \dfrac{bv + c}{1 + v +  {v}^{2} } \\

\rm \: 1 +  {v}^{2} = a(1 + v +  {v}^{2}) + (bv + c)(1 - v) \\

Put v = 1

\rm \: 1 +  1 = a(1 + 1 + 1) + 0\\

\rm \: 2 = 3a\\

\rm\implies \:a =  \dfrac{2}{3}  \\

Put v = 0,

\rm \: 1 + 0 = a(1 + 0 + 0) +  c(1 - 0) \\

\rm \: 1  = a + c \\

\rm \: 1  =  \dfrac{2}{3}  + c \\

\rm\implies \:c = \dfrac{1}{3}  \\

Put v = - 1,

\rm \: 1 + 1 = a(1 - 1  + 1) + ( - b + c)(1 + 1) \\

\rm \: 2 = a - 2b + 2c \\

\rm \: 2 = \dfrac{2}{3}  - 2b + \dfrac{2}{3}  \\

\rm \: 2 = \dfrac{4}{3}  - 2b \\

\rm \: 1 = \dfrac{2}{3}  - b \\

\rm \: b = \dfrac{2}{3}  - 1 \\

\rm\implies \: \: b =  -  \: \dfrac{1}{3} \\

On substituting the values,

\rm \:   \:  \dfrac{1 + {v}^{2} }{(1 - v)(1 + v +  {v}^{2}) }  \:   = \dfrac{2}{3(1 - v)}  + \dfrac{ - v + 1}{3(1 + v +  {v}^{2}) } \\

\rm \:   \:  \dfrac{1 + {v}^{2} }{1 -  {v}^{3} }  \:   = \dfrac{2}{3(1 - v)}  + \dfrac{ - v + 1}{3(1 + v +  {v}^{2}) } \\

\rm \:   \:  \dfrac{1 + {v}^{2} }{1 -  {v}^{3} }  \:   = \dfrac{2}{3(1 - v)}  -  \dfrac{2 v  -  2}{6(1 + v +  {v}^{2}) } \\

\rm \:   \:  \dfrac{1 + {v}^{2} }{1 - {v}^{3} }  \:   = -  \dfrac{2}{3( v - 1)}  -  \dfrac{2 v  + 1 -  3}{6(1 + v +  {v}^{2}) } \\

\rm \:   \:  \dfrac{1 + {v}^{2} }{1 - {v}^{3} }  \:   = -  \dfrac{2}{3( v - 1)}  -  \dfrac{2 v  + 1}{6(1 + v +  {v}^{2}) } + \dfrac{1}{6(1 + v +  {v}^{2} )}  \\

On integrating both sides, we get

\rm  \displaystyle\int\rm \dfrac{1 + {v}^{2} }{1 - {v}^{3} }dv = -\displaystyle\int\rm  \dfrac{2}{3( v - 1)}dv  -  \displaystyle\int\rm \dfrac{2 v  + 1}{6(1 + v +  {v}^{2}) }dv + \displaystyle\int\rm \dfrac{1}{6(1 + v +  {v}^{2} )} dv \\

\rm \: =   - \dfrac{2}{3}log |v - 1|   - \dfrac{1}{6}log |1 + v +  {v}^{2} |   + \dfrac{1}{6}\displaystyle\int\rm  \frac{dv}{ {v}^{2} + v +  \frac{1}{4}  -  \frac{1}{4} + 1}

\rm \: =   - \dfrac{2}{3}log |v - 1|   - \dfrac{1}{6}log |1 + v +  {v}^{2} |   + \dfrac{1}{6}\displaystyle\int\rm  \frac{dv}{ {(v +  \frac{1}{2} )}^{2} +  \frac{3}{4}}

\rm \: =   - \dfrac{2}{3}log |v - 1|   - \dfrac{1}{6}log |1 + v +  {v}^{2} |   + \dfrac{1}{6}\displaystyle\int\rm  \frac{dv}{ {(v +  \frac{1}{2} )}^{2} +   {( \frac{ \sqrt{3} }{2} )}^{2} }

\rm \: =   - \dfrac{2}{3}log |v - 1|   - \dfrac{1}{6}log |1 + v +  {v}^{2} |   + \dfrac{1}{3 \sqrt{3} } {tan}^{ - 1} \dfrac{2v + 1}{ \sqrt{3} }  \\

So,

On substituting the value,

\rm \:   \:\displaystyle\int\rm  \dfrac{1 + {v}^{2} }{1 - {v}^{3}} dv \:  = \displaystyle\int\rm  \dfrac{dx}{x}    \\

\rm \: - \dfrac{2}{3}log |v - 1|   - \dfrac{1}{6}log |1 + v +  {v}^{2} |   + \dfrac{1}{3 \sqrt{3} } {tan}^{ - 1} \dfrac{2v + 1}{ \sqrt{3} } = log |x|  + c \\

where,

\rm \: v =  \dfrac{y}{x}

is the solution of required differential equation.

Similar questions