(x²y)²-4x²y²(factorise)
Answers
→ (x²y)² - 4x²y²
→ x⁴y² - 4x²y²
→ x²y² (x² - 4)
→ x²y² (x² - 2²)
→ x²y² (x + 2) (x - 2)
Given Expression :
- (x²y)²- 4x²y²
To Do :
- Factorise the given expression.
Step 1 :
Equation at the end of step 1 :
⟹ (((x²) • y)²) - (22x² • y²)
Pulling out like terms :
Pull out like factors :
⟹ x⁴y² - 4x²y² = x²y² • (x² - 4)
Trying to factor as a Difference of Squares:
Factoring : x² - 4
Theory : A difference of two perfect squares, A² - B² can be factored into (A+B) • (A-B)
Proof : (A+B) • (A-B) =
A² - AB + BA - B² =
A² - AB + AB - B² =
A² - B²
Note : AB = BA is the commutative property of multiplication.
Note : AB + AB equals zero and is therefore eliminated from the expression.
Check : 4 is the square of 2
Check : x² is the square of x¹
∴ Factorization is : (x + 2) • (x - 2)
Final result :
∴ x²y² • (x + 2) • (x - 2)
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬