Math, asked by 9903825762, 29 days ago

x3–3x²y,x2-9y2 find gcd of teb following algebraic expressions​

Answers

Answered by Nikitabudhwani
1

x3-3x2y=x2(x-3y)

∴Factors of x3-3x2y= x2(x-3y)

x2-9y2=(x + 3y)(x-3y)

∴Factors of x2-9y2=(x + 3y)(x-3y)

GCD is the greatest common divisor, which is equal to the product of all the common divisors.

∴ the GCD of x3-3x2y, x2-9y2 is (x-3y)

Answered by Anonymous
3

Step-by-step explanation:

{\pmb{\small{\purple{\boxed{\blue{\red{\pink{\boxed {\underline{\bf{\red{Answer♡}}}}}}}}}}}}

x³-3x²y=x²(x-3y)

..Factors of x³-3x²y= x²(x-3y)

x²-9y²=(x + 3y)(x-3y)

Factors of x²-9y²=(x + 3y)(x-3y)

GCD is the greatest common divisor, which is equal to the product of all the common divisors.

..the GCD of x³-3x2y, x²-9y2 is (x-3y)

Similar questions