Math, asked by d61650312, 19 hours ago

(x³+6x²-x-18)÷(x+2)
please give the proper solution.​

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\dfrac{ {x}^{3}  +  {6x}^{2} - x - 18}{x  +  2}

So, here

\rm :\longmapsto\:Dividend :  {x}^{3} + 6 {x}^{2} - x - 18

\rm :\longmapsto\:Divisor :  x + 2

So, using Long Division Method, we have

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{\underline{\sf{\:\: {x}^{2} + 4x - 9\:\:}}}\\ {\underline{\sf{x  + 2}}}& {\sf{\: {x}^{3} + {6x}^{2} - x - 18\:\:}} \\{\sf{}}& \underline{\sf{\:\:   -  {x}^{3} - 2{x}^{2}  \:    \:  \:  \:  \: \:  \:  \:  \:   \:  \:  \:  \:  \: \:\:}} \\ {{\sf{}}}& {\sf{\: \:  \:  \:   \: 4{x}^{2} - x - 18}} \\{\sf{}}& \underline{\sf{\:\: \:   \:   - 4 {x}^{2}  - 8x  \:   \:  \:  \: \:\:}} \\ {\underline{\sf{}}}& {\sf{\:\: \:  \:  \:  \:  \:    \:  \:  -9x - 18  \:\:}} \\{\sf{}}& \underline{\sf{\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  9x + 18\:\:}} \\ {\underline{\sf{}}}& {\sf{\:\: \:  \:   \:  \:  \:  \:  \:  \: \:  \:  0\:\:}}  \end{array}\end{gathered}\end{gathered}\end{gathered}

So, it means

\rm \implies\:Quotient :  {x}^{2} + 4x - 9

Hence,

\rm :\longmapsto\:\boxed{\tt{ \dfrac{ {x}^{3}  +  {6x}^{2} - x - 18}{x  +  2}  =  {x}^{2} + 4x - 9}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Verification :-

We have,

\rm :\longmapsto\:Divisor :  x + 2

and

\rm \implies\:Quotient :  {x}^{2} + 4x - 9

Now, Consider

\rm :\longmapsto\:Divisor \times Quotient + remainder

\rm \:  =  \: (x + 2)( {x}^{2} + 4x - 9) + 0

\rm \:  =  \:  {x}^{3} +  {4x}^{2} - 9x +  {2x}^{2} + 8x - 18

\rm \:  =  \:  {x}^{3} +  {6x}^{2} - x - 18

\rm \:  =  \: Dividend

Hence, Verified

Similar questions