Math, asked by EdwinRojy, 7 months ago

x3+x2-1/x2+1/x3 factorise​

Answers

Answered by rajeevr06
46

Answer:

 {x}^{3}  +  \frac{1}{ {x}^{3} }  +  {x}^{2}  -  \frac{1}{ {x}^{2} }  =

(x +  \frac{1}{x} ) {}^{3}  - 3 \times x \times  \frac{1}{x} (x +  \frac{1}{x} ) + (x +  \frac{1}{x} )(x  -   \frac{1}{x} ) =

(x +  \frac{1}{x} )((x +  \frac{1}{x} ) {}^{2}  - 3 + x  -   \frac{1}{x} ) =

(x +  \frac{1}{x} )( {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 - 3 + x -  \frac{1}{x} ) =

(x +  \frac{1}{x} )( {x}^{2}  +  \frac{1}{ {x}^{2} }  + x -  \frac{1}{x}  - 1)

Answered by swethassynergy
2

The  factor of x^{3} +x^{2} -\frac{1}{x^{2} } +\frac{1}{x^{3} } is (x+\frac{1}{x} )(x^{2} +\frac{1}{x^{2} } +x-\frac{1}{x} -1 }).

Step-by-step explanation:

Given:

x^{3} +x^{2} -\frac{1}{x^{2} } +\frac{1}{x^{3} }.

To Find:

The  factor of x^{3} +x^{2} -\frac{1}{x^{2} } +\frac{1}{x^{3} }.

Solution:

As given,x^{3} +x^{2} -\frac{1}{x^{2} } +\frac{1}{x^{3} }.

x^{3} +x^{2} -\frac{1}{x^{2} } +\frac{1}{x^{3} }

=x^{3} +\frac{1}{x^{3} }+x^{2} -\frac{1}{x^{2} }

Using formula p^{3} +q^{3} =(p+q)(p^{2}-pq+q^{2}  ) and p^{2} -q^{2} =(p+q)(p-q).

=(x+\frac{1}{x} )^{3} -3\times x\times \frac{1}{x}(x+\frac{1}{x} ) +(x+\frac{1}{x} )(x-\frac{1}{x} )

=(x+\frac{1}{x} )^{3} -3(x+\frac{1}{x} ) +(x+\frac{1}{x} )(x-\frac{1}{x} )

=(x+\frac{1}{x} )((x+\frac{1}{x} )^{2} -3+(x-\frac{1}{x} ))

Using formula (p+q)^{2} =p^{2} +q^{2} +2pq.

=(x+\frac{1}{x} )(x^{2} +\frac{1}{x^{2} } +2\times x\times \frac{1}{x}   -3+x-\frac{1}{x} )

=(x+\frac{1}{x} )(x^{2} +\frac{1}{x^{2} } +2   -3+x-\frac{1}{x} )

=(x+\frac{1}{x} )(x^{2} +\frac{1}{x^{2} } -1+x-\frac{1}{x} )

=(x+\frac{1}{x} )(x^{2} +\frac{1}{x^{2} }+x-\frac{1}{x} -1)

Thus,the  factor of x^{3} +x^{2} -\frac{1}{x^{2} } +\frac{1}{x^{3} } is (x+\frac{1}{x} )(x^{2} +\frac{1}{x^{2} } +x-\frac{1}{x} -1 }).

#SPJ2

Similar questions