x3+y3=35, x+y=5 find x4+y4=?
Answers
Answered by
2
Answer:
I hope it helps you.
Step-by-step explanation:
We know that
x3 + y3 = (x + y)(x2 + y2 – xy)
Now we have x3 + y3 = 22 and x + y = 5
⇒ 22 = 5(x2 + y2 – xy)
⇒ 22 = 5[(x + y)2 − 3xy)]
⇒ 22 = 5[(5)2 − 3xy)]
⇒ xy = 103/15
Now multiply x3 + y3 = 22 with x + y = 5
⇒ x4 + y4 + xy(x2 + y2) = 110
⇒ x4 + y4 = 110 – xy{(x2 + y2 − 2xy + 2xy)}
⇒ x4 + y4 = 110 – xy{(x + y)2 − 2xy}
xy = 103/15 and x + y = 5
⇒ x4 + y4 = 110 – 103/15{(5)2 − 2 × 103/15}
⇒ x4 + y4 = 110 – 6.87{(25 – 2 × 13.73}
⇒ x4 + y4 = 126.9 ~ 127
∴ Value of x4 + y4 is 127
Similar questions