Math, asked by aniket20599p, 1 year ago

x3+y3+z3-3xyz=1/2(x+y+z)[(x-ysquare)+(y-z)square+(z-xsquare)]

Answers

Answered by ShuchiRecites
4
\textbf{ Hello Mate! }

Gare up = We have to prove the given expression. Let's do it!

Solution =

LHS

 =  {x}^{3}  +  {y}^{3}   +  {z}^{3}  - 3xyz

RHS

 =  \frac{1}{2} (x + y + z)( {(x - y)}^{2}  +  {(y - z)}^{2}  +  {(z - x)}^{2} ) \\  =  \frac{1}{2} (x + y + z)( {x}^{2}  +  {y}^{2}  - 2xy +  {y}^{2}  +  {z}^{2}  - 2yz +  {z}^{2}  +  {x}^{2}  - 2xz) \\  =  \frac{1}{2} (x + y + z)(2 {x}^{2}  + 2 {y}^{2}  + 2 {z}^{2}  - 2xy - 2yz - 2zx) \\  =  \frac{1}{2} (x + y + z) \times 2( {x}^{2}  +  {y}^{2}  +  {z}^{2}  - xy - yz - zx) \\  =  {x}^{3}  +  {y}^{3}  +  {z}^{3}  - 3xyz

LHS = RHS

HENCE PROVED

Have great future ahead!
Similar questions