x4 +1/x4 =49 find x3 - 1/x3
Answers
Answered by
2
x4+(1/x)4x4+(1/x)4needs to be first simplified. We know that
(x+(1/x))2=x2+(1/x)2+2−−−(i)(x+(1/x))2=x2+(1/x)2+2−−−(i)
and
(x2+(1/x)2)2=x4+(1/x)4+2−−−(ii)(x2+(1/x)2)2=x4+(1/x)4+2−−−(ii)
From above two equations, we can get x4+(1/x)4.x4+(1/x)4.
So now we need to find x+1/xx+1/x
For that get 1/x.Forwhichrationlizex.1/x.Forwhichrationlizex.
1/x=1∗(9−4root5)/(9+4root5)∗(9−4root5)1/x=1∗(9−4root5)/(9+4root5)∗(9−4root5)
1/x=9−4root51/x=9−4root5
x+1/x=9+4root5+9−4root5x+1/x=9+4root5+9−4root5
x+1/x=18x+1/x=18
Substituting its value in eq(i), we get
x^2 + (1/x)^2 = (18)^2 -2 = 322
substituting this value in eq(ii) , we get
x^4 + (1/x)^4 = (322)^2 - 2 = 103682
So, this is the final answer.
(x+(1/x))2=x2+(1/x)2+2−−−(i)(x+(1/x))2=x2+(1/x)2+2−−−(i)
and
(x2+(1/x)2)2=x4+(1/x)4+2−−−(ii)(x2+(1/x)2)2=x4+(1/x)4+2−−−(ii)
From above two equations, we can get x4+(1/x)4.x4+(1/x)4.
So now we need to find x+1/xx+1/x
For that get 1/x.Forwhichrationlizex.1/x.Forwhichrationlizex.
1/x=1∗(9−4root5)/(9+4root5)∗(9−4root5)1/x=1∗(9−4root5)/(9+4root5)∗(9−4root5)
1/x=9−4root51/x=9−4root5
x+1/x=9+4root5+9−4root5x+1/x=9+4root5+9−4root5
x+1/x=18x+1/x=18
Substituting its value in eq(i), we get
x^2 + (1/x)^2 = (18)^2 -2 = 322
substituting this value in eq(ii) , we get
x^4 + (1/x)^4 = (322)^2 - 2 = 103682
So, this is the final answer.
Similar questions