Math, asked by rathoreanamika2008, 9 months ago

x⁴ +1/x⁴=6239 find (x+1/x)=?​

Answers

Answered by anindyaadhikari13
5

\bf\large\underline\blue{Question:-}

  •  {x}^{4}  +  \frac{1}{ {x}^{4} }  = 6239, find the value of
  • x +  \frac{1}{x}

\bf\large\underline\blue{Solution:-}

 {x}^{4}  +  \frac{1}{ {x}^{4} }  = 6239

 \implies {x}^{4}  +  \frac{1}{ {x}^{4} }  + 2 \times  {x}^{2}   \times  \frac{1}{ {x}^{2} } = 6239  + 2 \times  {x}^{2}  \times  \frac{1}{ {x}^{2} }

 \implies ({x}^{2}  +  \frac{1}{ {x}^{2} } )^{2}  = 6241

 \implies ({x}^{2}  +  \frac{1}{ {x}^{2} } )  = \sqrt{6241}

 \implies ({x}^{2}  +  \frac{1}{ {x}^{2} } )  = 79

 \implies ({x}^{2}  +  \frac{1}{ {x}^{2} } ) + 2 \times x \times  \frac{1}{x}   = 79 + 2 \times x \times  \frac{1}{x}

 \implies  {(x +  \frac{1}{x} )}^{2}  = 81

 \implies  {(x +  \frac{1}{x} )} =  \sqrt{81}

 \implies  {(x +  \frac{1}{x} )} =   \pm9

\bf\large\underline\blue{Answer:-}

  • x +  \frac{1}{x}  =  \pm9
Similar questions