Math, asked by garvsaini34, 10 months ago

x⁴+1uponx⁴= 119 find the value of x³-1/x³​

Answers

Answered by Darkrai14
152

★ᏀᏆᐯᗴᑎ:-

\sf x^4 + \dfrac{1}{x^4} = 119

★Ͳϴ ҒᏆΝᎠ:-

\sf x - \dfrac{1}{x}

★ᔑᝪしᑌᎢᏆᝪᑎ:-

\sf (a+b)^2 = a^2 + b^2 + 2ab

First, we will find x^2 + \dfrac{1}{x^2}

\sf \implies \Bigg ( x^2 + \dfrac{1}{x^2} \Bigg )^2= (x^2)^2 + \Bigg ( \dfrac{1}{x^2} \Bigg )^2 + 2 \times x \times \dfrac{1}{x}

\sf \implies \Bigg ( x^2 + \dfrac{1}{x^2} \Bigg )^2= x^4+ \dfrac{1}{x^4} + 2

\sf \implies \Bigg ( x^2 + \dfrac{1}{x^2} \Bigg )^2= 119 + 2

\sf \implies \Bigg ( x^2 + \dfrac{1}{x^2} \Bigg )^2= 121

\sf \implies x^2 + \dfrac{1}{x^2}= \sqrt{121}

\sf \implies x^2 + \dfrac{1}{x^2}= 11

______________________________

Now, we will find x- \dfrac{1}{x}

\sf (a-b)^2 = a^2+b^2-2ab

\sf \implies \Bigg ( x - \dfrac{1}{x} \Bigg )^2 = (x)^2 + \Bigg ( \dfrac{1}{x} \Bigg )^2 - 2 \times x \times \dfrac{1}{x}

\sf \implies \Bigg ( x - \dfrac{1}{x} \Bigg )^2 = x^2 + \dfrac{1}{x^2} - 2

\sf \implies \Bigg ( x - \dfrac{1}{x} \Bigg )^2 = 11 - 2

\sf \implies \Bigg ( x - \dfrac{1}{x} \Bigg )^2 = 9

\sf \implies x - \dfrac{1}{x} = \sqrt{9}

\sf \implies x - \dfrac{1}{x} = 3

__________________________________

Finally, we will find \sf x^3 - \dfrac{1}{x^3}

We know that a³-b³ = (a-b)(a²+b²+ab)

Using this identity,

\sf \implies x^3 - \dfrac{1}{x^3} = \Bigg (x - \dfrac{1}{x} \Bigg ) \Bigg ( x^2 + \dfrac{1}{x^2} + x \times \dfrac{1}{x} \Bigg )

\sf \implies x^3 - \dfrac{1}{x^3} = (3) ( 11+ 1)

\sf \implies x^3 - \dfrac{1}{x^3} = (3) ( 12)

\sf \implies x^3 - \dfrac{1}{x^3} = 36

Hope it helps.

Mark as Brainliest if it helps you☺️

Similar questions