Math, asked by AnirudhSinghThakur, 9 months ago

x⁴+x²+25
Factorise


Please​

Answers

Answered by Anonymous
8

Answer :-

The factors of the polynomial (x⁴ + x² + 25) are -

  • (x² + 3x + 5) (x² - 3x + 5)

Solution :-

\longrightarrow {x}^{4}  +  {x}^{2}  + 25 \\  \\ \longrightarrow {x}^{4}  + 10 {x}^{2}  - 9 {x}^{2}  + 25 \\  \\  \longrightarrow ({x}^{4}  + 10 {x}^{2}  + 25) - 9 {x}^{2}  \\  \\  \longrightarrow \big( ( { {x}^{2} )}^{2}   + 2 \times 5 \times  {x}^{2}  + ( {5})^{2} \big) -  {(3x)}^{2}

Using the identity :-

  •  {a}^{2}  + 2ab +  {b}^{2}  =  {(a + b)}^{2}

\longrightarrow {( {x }^{2} + 5) }^{2}  - ( {3x)}^{2}

Now, Use the identity

  •  {a}^{2}  -  {b}^{2}  = (a + b)(a - b)

\longrightarrow \big( ({x}^{2}  + 5) + 3x \big) \big( ({x}^{2}  + 5) - 3x \big)

Hence the Roots are ,

</strong><strong>\longrightarrow</strong><strong> </strong><strong>( {x}^{2}  + 3x + 5)( {x}^{2}  - 3x + 5)

Similar questions