x⁶+1 ÷x+1 find the reminder
Answers
Solution :
( x⁶ + 1)/( x + 1 )
_______
x + 1 ) x⁶ + 1 ( x⁵ - x⁴ + x³ - x² + x - 1
x⁶ + x⁵
(-) (-)
_______
- x⁵ + 1
- x⁵ - x⁴
(+) (+)
_______
x⁴ + 1
x⁴ + x³
(-) (-)
_______
- x³ + 1
- x³ - x²
(+) (+)
______
x² + 1
+ x² + x
(-) (- )
_______
- x + 1
- x - 1
_________
2
On dividing x⁶ + 1 by x + 1 , the quotient is x⁵ - x⁴ + x³ - x² + x - 1 and the remainder is 2.
__________________________________
Additional Information -
(a + b)² = a² + 2ab + b²
(a + b)² = (a - b)² + 4ab
(a - b)² = a² - 2ab + b²
(a - b)² = (a + b)² - 4ab
a² + b² = (a + b)² - 2ab
a² + b² = (a - b)² + 2ab
2 (a² + b²) = (a + b)² + (a - b)²
4ab = (a + b)² - (a - b)²
ab = {(a + b)/2}² - {(a-b)/2}²
(a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
(a + b)³ = a³ + 3a²b + 3ab² b³
(a + b)³ = a³ + b³ + 3ab(a + b)
(a - b)³ = a³ - 3a²b + 3ab² - b³
a³ + b³ = (a + b)( a² - ab + b² )
a³ + b³ = (a + b)³ - 3ab( a + b)
a³ - b³ = (a - b)( a² + ab + b²)
a³ - b³ = (a - b)³ + 3ab ( a - b )
__________________________________
Answer :
2
Note :
★ Remainder theorem : If a polynomial p(x) is divided by (x - c) , then the remainder obtained is given as R = p(c) .
★ Factor theorem :
If the remainder obtained on dividing a polynomial p(x) by (x - c) is zero , ie. if R = p(c) = 0 , then (x - c) is a factor of the polynomial p(x) .
If (x - c) is a factor of the polynomial p(x) , then the remainder obtained on dividing the polynomial p(x) by (x - c) is zero , ie. R = p(c) = 0 .
Solution :
Let p(x) = x⁶ + 1 .
Here ,
We need to find the remainder when p(x) is divided by (x + 1) .
If x + 1 = 0 , then x = -1 .
Now ,
The remainder obtained on dividing p(x) = x⁶ + 1 by (x + 1) will be given as ;
=> R = p(-1)
=> R = (-1)⁶ + 1
=> R = 1 + 1
=> R = 2