Math, asked by abdurrahmanshaikh, 11 months ago

x8-81 factories please answer me​

Answers

Answered by mysticd
0

Answer:

x^{8}-81\\=(x^{4}+9)(x^{2}+3)(x+\sqrt{3})(x-\sqrt{3})

Step-by-step explanation:

x^{8}-81\\=(x^{4})^{2}-9^{2}\\=(x^{4}+9)(x^{4}-9)

/* By algebraic identity:

-b² = (a+b)(a-b) */

= (x^{4}+9)[(x^{2})^{2}-3^{2})

= (x^{4}+9)(x^{2}+3)(x^{2}-3)

= (x^{4}+9)(x^{2}+3)[x^{2}-(\sqrt{3})^{2}]

= (x^{4}+9)(x^{2}+3)(x+\sqrt{3})(x-\sqrt{3})

Therefore,

x^{8}-81\\=(x^{4}+9)(x^{2}+3)(x+\sqrt{3})(x-\sqrt{3})

•••♪

Answered by vilnius
1

(x⁴ + 9) (x² + 3) (x + \sqrt{3}) (x - \sqrt{3})

Step-by-step explanation:

Given,

x⁸ - 81

(x⁴)² - (9)²

Substituting the formula: a² - b² = (a + b) (a - b)

(x⁴ + 9) (x⁴ - 9)

(x⁴ + 9) ((x²)² - (3)²)

Substituting the formula: a² - b² = (a + b) (a - b)

(x⁴ + 9) (x² + 3) (x² - 3)

Substituting the formula: a² - b² = (a + b) (a - b)

(x⁴ + 9) (x² + 3) (x + \sqrt{3}) (x - \sqrt{3})

Learn more:

Factorise the following

brainly.in/question/6734488

brainly.in/question/12938195

Similar questions