Math, asked by najamhusain876, 3 months ago

xcos(90+A) cos(90-A)+tan(180-A)cot(90-A)=sinAsin(180-A).Then find the value of x.​

Answers

Answered by ravi2303kumar
5

Answer:

x = tan²A - 2sec²A  

( check your question, if you havent got your answer )

Step-by-step explanation:

Given that

x.cos(90+A) cos(90-A) + tan(180-A).cot(90-A) = sinAsin(180-A)

=> x.(-sinA).sinA + (-tanA).tanA = sinA.sinA

=> -xsin²A - tan²A = sin²A

=> sin²A + x sin²A = - tan²A

=> sin²A(1+x) = -tan²A

=> 1+x = -tan²/sin²A = \frac{\frac{-sin^2A}{cos^2A} }{sin^2A} = \frac{-sin^2A}{cos^2A*sin^2A}

=> 1+x = -1/cos²A = -sec²A

=> x = -1-sec²A

=> x = -(sec²A-tan²A)-sec²A

=> x = tan²A-sec²A-sec²A

=> x = tan²A - 2sec²A

Similar questions