Xcos phi1 + ysin phi1 = a and xcos phi2 + ysin phi2 = a find point of intersection of the straight line
Answers
I have changed few variables(angles).
Answer:
(a(sinA - sinB)/sin(A - B), a(cosB - cosA)/sin(A - B)) , A = phi1 & B = phi2
Step-by-step explanation:
xcosA + ysinA = a ... (1)
xcosB + ysinB = a ... (2)
Multiply (1) & (2) with sinB & sinA:
=> xcosAsinB + ysinAsinB = asinB
&
=> xcosBsinA + ysinBsinA = asinA
Subtract one from another, here new(1) - new(2):
xcosAsinB + ysinAsinB = asinB
xcosBsinA + ysinBsinA = asinA
- - -
x(cosAsinB-cosBsinA) = a(sinB-sinA)
=> x(cosAsinB-cosBsinA) = a(sinB-sinA)
=> xsin(B - A) = a(sinB - sinA)
=> x = a(sinB - sinA)/sin(B - A)
Or, = a(sinA - sinB)/sin(A - B)
Now, multiply (1) & (2) with cosB & cosA:
xcosAcosB + ysinAcosB =acosB
&
xcosAcosB + ysinBcosA = acosA
Subtract one from another, here new(1) - new(2):
xcosAcosB + ysinAcosB =acosB
xcosAcosB + ysinBcosA = acosA
- - -
y(sinAcosB - sinBcosA) = a(cosB - cosA)
=> y(sin(A - B)) = a(cosB - cosA)
=> y = a(cosB - cosA)/sin(A - B)
Thus, points are:
(x, y) = (a(sinA - sinB)/sin(A - B), a(cosB - cosA)/sin(A - B))