xCosec 30 sec²us/ 8cos²45 Sin²60=tan²60-tan²30?
Find x
Answers
Answer:
xcosec30sec
2
45sin
2
60=tan
2
60−tan
2
30?
Solve for c
c=
15sin(120)cos(30)
cos(45)
−
eosx
30((sin(30)cos(60))
2
−(sin(60)cos(30))
2
)
c=−
15sin(120)cos(30)
cos(45)
−
eosx
30((sin(30)cos(60))
2
−(sin(60)cos(30))
2
)
, (s<0 and o<0 and x<0) or (x<0 and o>0 and s>0) or (o<0 and x>0 and s>0) or (s<0 and x>0 and o>0)
Steps by Finding Square Root
xcosec30sec
2
45sin
2
60=tan
2
60−tan
2
30?
Multiply c and c to get c
2
.
30xc
2
ose(sec(45))
2
(sin(60))
2
=(tan(60))
2
−(tan(30))
2
Divide both sides by 30xose(sec(45))
2
(sin(60))
2
.
30e(sin(60))
2
(sec(45))
2
osx
30e(sin(60))
2
(sec(45))
2
osxc
2
=
30e(sin(60))
2
(sec(45))
2
osx
(tan(60))
2
−(tan(30))
2
Dividing by 30xose(sec(45))
2
(sin(60))
2
undoes the multiplication by 30xose(sec(45))
2
(sin(60))
2
.
c
2
=
30e(sin(60))
2
(sec(45))
2
osx
(tan(60))
2
−(tan(30))
2
Divide (tan(60))
2
−(tan(30))
2
by 30xose(sec(45))
2
(sin(60))
2
.
c
2
=
15e(sin(90)+sin(150))
2
osx
2(cos(60)−cos(120))(cos(90)+1)
Take the square root of both sides of the equation.
c=
15(sin(90)+sin(150))
e
−
osx
30(cos(90)+1)(cos(120)−cos(60))
c=−
15(sin(90)+sin(150))
e
−
osx
30(cos(90)+1)(cos(120)−cos(60))
Solve for o
o=−
15esx
2((sin(30)cos(60))
2
−(sin(60)cos(30))
2
)×(
sin(120)cos(30)c
cos(45)
)
2
,c
=0 and s
=0 and x
=0