Math, asked by sukhjitkaur1653, 4 days ago

Xcosx + sinx / x^2+ tanx lim x0

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

  \displaystyle\lim_{x \to0}  \dfrac{x  \cos(x)  +  \sin(x) }{ {x}^{2}  +  \tan(x) }

  \displaystyle = \lim_{x \to0}  \dfrac{x  \cos(x)  +  \sin(x) }{x \left \{ x  +   \dfrac{\tan(x) }{x} \right \}}

  \displaystyle = \lim_{x \to0}  \dfrac{  \cos(x)  +  \dfrac{ \sin(x)}{x} }{ x  +   \dfrac{\tan(x) }{x} }

   = \dfrac{   \displaystyle \lim_{x \to0} \left \{ \cos(x)  +  \dfrac{ \sin(x)}{x}  \right \}}{  \displaystyle \lim_{x \to0}  \left \{ x  +   \dfrac{\tan(x) }{x}  \right \}}

   = \dfrac{   \displaystyle \lim_{x \to0}  \cos(x)  +  \lim_{x \to0}  \dfrac{ \sin(x)}{x}  }{  \displaystyle \lim_{x \to0} x  + \lim_{x \to0}    \dfrac{\tan(x) }{x}  }

   = \dfrac{  1  + 1}{ 0  + 1  }

   = \dfrac{  2}{  1  }

   =  2

Answered by MysticSohamS
1

Answer:

your solution is in above pic

pls mark it as brainliest

Attachments:
Similar questions