Math, asked by supriyasweetyy, 1 year ago

XD is a median of triangle XYZ Eis a midpoint XD such that XE=ED find ar of triangle yxd ar xez

Answers

Answered by mysticd
4

 i ) In \: \triangle XYZ ;\: XD \:is \:a \: mid-point

 \therefore area(\triangle YXD) \\= Area(\triangle XDZ)\\= \frac{1}{2} \times area ( \triangle XYZ ) \: ---(1)

\pink { ( Median \:of \:a \: triangle \:divides \:it }\\\pink { into \:two \:triangles \:of \:equal \:areas )}

 ii ) area(\triangle XEZ) \\= \frac{1}{2} \times area ( \triangle XDZ ) \: \blue { ( E \:is \: mid-point \:of \:XD )}\\= \frac{1}{2} \times \frac{1}{2} \times area ( \triangle XYZ )\: [ From \: (1) ] \\= \frac{1}{4} \times area ( \triangle XYZ )

Therefore.,

 \red{i) area(\triangle YXD)} \\\green {= Area(\triangle XDZ)}\\\green {= \frac{1}{2} \times area ( \triangle XYZ ) }

 \red{ii ) area(\triangle XEZ)}\\\green {= \frac{1}{4} \times area ( \triangle XYZ )}

•••♪

Attachments:
Answered by harwinderbariar117
0

Step-by-step explanation:

correct answer is this mark me as brain list hope it helps

Attachments:
Similar questions