Math, asked by nikhilkumarkarn7575, 1 year ago

xdx+ydy=a^2(xdy-ydx)/x^2+y^2

Attachments:

Answers

Answered by abhi178
9
it is given that, xdx+ydy=a^2\frac{xdy-ydx}{x^2+y^2}

first of all, resolve xdx + ydy
xdx+ydy=\frac{1}{2}(2xdx+2ydy)\\\\=\frac{1}{2}d(x^2+y^2)

you know, d(tan^{-1}P)=\frac{1}{1+P^2}dP
so, d\left(tan^{-1}\frac{y}{x}\right)=\frac{x^2}{x^2+y^2}\frac{xdy-ydx}{x^2}

= d\left(tan^{-1}\frac{y}{x}\right)=\frac{xdy-ydx}{x^2+y^2}

hence,
xdx+ydy=a^2\frac{xdy-ydx}{x^2+y^2} is converted into
\frac{1}{2}d(x^2+y^2)=a^2d\left(tan^{-1}\frac{y}{x}\right)

or, d\left(\frac{x^2}{2}+\frac{y^2}{2}\right)=d\left(a^2tan^{-1}\frac{y}{x}\right)

or, \frac{x^2}{2}+\frac{y^2}{2}=a^2tan^{-1}\frac{y}{x}+C

hence, solution is \frac{x^2}{2}+\frac{y^2}{2}=a^2tan^{-1}\frac{y}{x}+C
Answered by sherafgan354
0

Answer:

 \frac{x^{2}}{2} + \frac{y^{2}}{2} = a^{2}tan^{-1}(\frac{y}{x}) + C

Step-by-step explanation:

Given expression is

xdx + ydy = a^{2} (\frac{xdy - ydx}{x^{2} + y^{2} } ) .... (A)

As, we need to find in the solution of above expression, so, let us take left hand side first, which can be written as follows

xdx + ydy = \frac{1}{2} (2xdx + 2ydy)

so, we can write the above equation as

xdx + ydy = \frac{1}{2} d(x^{2} + y^{2}) .....(1)

As we know already

 d(tan^{-1}A)= \frac{1}{1 + A^{2}} . dA

d(tan^{-1}(\frac{y}{x})) = \frac{x^{2}}{x^{2} + y^{2}} . \frac{xdy - ydx}{x^{2}}

So

d(tan^{-1}(\frac{y}{x})) = \frac{xdy - ydx}{x^{2} + y^{2}}

multiply both sides of above equation by a^{2}

a^{2}d(tan^{-1}(\frac{y}{x})) = a^{2}(\frac{xdy - ydx}{x^{2} + y^{2}}) ...(2)

a^{2}d(tan^{-1}(\frac{y}{x})) is equation to right hand side of equation (A).

Now substituting left hand side of equation A with  \frac{1}{2} d(x^{2} + y^{2}) from equation (1) and right hand side with a^{2}d(tan^{-1}(\frac{y}{x})) of equation 2, we get

 \frac{1}{2} d(x^{2} + y^{2}) = a^{2}d(tan^{-1}(\frac{y}{x}))

The differential will be cancelled on both sides and we will get following equation

 \frac{x^{2}}{2} + \frac{y^{2}}{2} = a^{2}tan^{-1}(\frac{y}{x}) + C

This is our solution




Similar questions